Answer:
it wont be because the hand brake would be on
Answer:
So the sound intensity level they would experience without the earplugs is 110.32dB.
Explanation:
Given data
Sound intensity by factor =215
Sound intensity level =87 dB
To find
Sound intensity level they would experience without the earplugs
Solution
First we need to find the new sound intensity level
So

The dB can be calculated as:

Substitute the given values

So the sound intensity level they would experience without the earplugs is 110.32dB.
Explanation:
a) The Earth makes 1 rotation in 24 hours. In seconds:
24 hr × (3600 s / hr) = 86400 s
b) 1 rotation is 2π radians. So the angular velocity is:
2π rad / 86400 s = 7.27×10⁻⁵ rad/s
c) The earth's linear velocity is the angular velocity times the radius:
40075 km × 7.27×10⁻⁵ rad/s = 2.91 km/s
Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
The required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
First, we must understand that the component of the velocity along the vertical is due to maximum height achieved and expressed as usin
θ.
The component of the velocity along the horizontal is due to the range of the object and is expressed as ucosθ.
If the <u>air resistance is ignored</u>, the velocity of the object will be constant throughout the flight and the initial velocity will be equal to the final velocity.
Hence the required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ
Learn more here; brainly.com/question/12870645