The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns
By Hubble theory in which universe is expanding,
<span><span>Imagine we have a 2 lb ball of putty moving with a speed of 5 mph striking and sticking to a 18 lb bowling ball at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v1. To find v1, use momentum conservation: 2x5=(18+2)v1, v1=0.5 mph. </span><span>Next, imagine we have a 18 lb bowling ball moving with a speed of 5 mph striking and sticking to a 2 lb ball of putty at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v2. To find v2, use momentum conservation: 18x5=(18+2)v2, v2=4.5 mph. </span><span>
</span><span>
</span><span>now figure out your problem its really easy let me know if you need more help </span></span>
Answer:
please give me brain list and follow
Explanation:
Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value. If the charges come 10 times closer, the size of the force increases by a factor of 100. The size of the force is proportional to the value of each charge.
'H' = height at any time
'T' = time after both actions
'G' = acceleration of gravity
'S' = speed at the beginning of time
Let's call 'up' the positive direction.
Let's assume that the tossed stone is tossed from the ground, not from the tower.
For the stone dropped from the 50m tower:
H = +50 - (1/2) G T²
For the stone tossed upward from the ground:
H = +20T - (1/2) G T²
When the stones' paths cross, their <em>H</em>eights are equal.
50 - (1/2) G T² = 20T - (1/2) G T²
Wow ! Look at that ! Add (1/2) G T² to each side of that equation,
and all we have left is:
50 = 20T Isn't that incredible ? ! ?
Divide each side by 20 :
<u>2.5 = T</u>
The stones meet in the air 2.5 seconds after the drop/toss.
I want to see something:
What is their height, and what is the tossed stone doing, when they meet ?
Their height is +50 - (1/2) G T² = 19.375 meters
The speed of the tossed stone is +20 - (1/2) G T = +7.75 m/s ... still moving up.
I wanted to see whether the tossed stone had reached the peak of the toss,
and was falling when the dropped stone overtook it. The answer is no ... the
dropped stone was still moving up at 7.75 m/s when it met the dropped one.