Answer:
total surface area is 432
Explanation:
Given data
base = 6
diagonals = 8
altitude = 12
to find out
total surface area
solution
we know total surface area of prism is
total surface area = lateral surface area + 2base area ..............1
so
first we calculate base perimeter i.e = 2 length + 2 width
so perimeter = 2(8) + 2(6) = 25
and area = length * width = 8*6 = 48
so lateral surface area is perimeter * height i.e
lateral surface area = 28* 12
lateral surface area = 336
put this value in equation 1 we get
total surface area = lateral surface area + 2base area
total surface area = 336 + 2(48)
total surface area is 432
Answer:
true
Explanation:
The number of protons, neutrons, and electrons in an atom can be determined from a set of simple rules. The number of protons in the nucleus of the atom is equal to the atomic number (Z). The number of electrons in a neutral atom is equal to the number of protons.
When the object is big enough to contract itself into a ball.
Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
In order for Greg to safely drain the water out of the noodles, he should use potholders or any thing that is does not conduct heat or transfer heat. Some pots are also equipped with handles that are made of plastics for safely transferring of its content to another container.