Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.
If the echo (the reflected sound) reaches your ear less than about
0.1 second after the original sound, your brain doesn't separate them,
and you're not aware of the echo even though it's there.
If the echo comes from, say, a wall, 0.1 second means you'd have to be
about 17 meters away from the wall. If you're closer than that, then the
echo reaches you in less than 0.1 second and you're not aware of it.
A. 30 meters . . .
No. You hear that echo easily
B. you're standing within range of both sounds . . .
No. You hear that echo easily, if you're at least 17 meters from the wall.
C. less than 0.1 second later . . .
That's it. The echo is there but your brain doesn't know it.
D. 21.5 meters
No. You hear that echo easily.
Answer:
It will cause kinetic energy to increase.
Explanation:
Given that Speed and Motion you went from the starting line to the finish line at different rates.
If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.
And since Kinetic energy K.E = 1/2mv^2
Increase in the mass of the body will definitely make the kinetic energy of the body to increase.
Since the time is the same, that means the speed V is the same.
Weight W = mg
m = W/g
The new kinetic energy will be:
K.E = 1/2(M + m)v^2
This means that there will be increase in kinetic energy.
Answer:
Many drivers follow the “three-second rule.” In other words, you should keep three seconds worth of space between your car and the car in front of you in order to maintain a safe following distance.
Thank you and please rate me as brainliest as it will help me to level up