If the acceleration is constant (negative or positive) the instantaneous acceleration cannot be
Average acceleration: [final velocity - initial velocity ] /Δ time
Instantaneous acceleration = d V / dt =slope of the velocity vs t graph
If acceleration is increasing, the slope of the curve at one moment will be higher than the average acceleration.
If acceleration is decreasing, the slope of the curve at one moment will be lower than the average acceleration.
If acceleration is constant, the acceleration at any moment is the same, then only at constant accelerations, the instantaneuos acceleration is the same than the average acceleration.
Constant zero acceleration is a particular case of constant acceleration, so at constant zero acceleration the instantaneous accelerations is the same than the average acceleration: zero. But, it is not true that only at zero acceleration the instantaneous acceleration is equal than the average acceleration.
That is why the only true option and the answer is the option D. only at constant accelerations.
Below the crust is the mantle, a dense, hot layer of semi-solid rock approximately 2,900 km thick. The mantle, which contains more iron, magnesium, and calcium than the crust, is hotter and denser because temperature and pressure inside the Earth increase with depth.
Hope this helped! :)
Can I be brainliest please?
Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²
Answer:
1. Torque → F. Study of forces
2. C.O.G → D. Point of action of weight.
3. Plumb line → A. Line of C.O.G