Answers: 1) The first quartile (Q₁) = 11 ; 2) The median = 38.5 ; 3) The third quartile (Q₃) = 45 ; 4) The difference of the largest value and the median = 10.5 . _______ Explanation:
Given this data set with 8 (eight) values: → {6, 47, 49, 15, 43, 41, 7, 36}; →Rewrite the values in increasing order; to help us find the median, first quartile (Q,) and third quartile (Q₃) : → {6, 7, 15, 36, 41, 43, 47, 49}. →We want to find; or at least match; the following 4 (four) values [associated with the above data set] — 38.5, 11, 10, 45 ;
1) The first quartile (Q₁); 2) The median; 3) The third quartile (Q₃); & 4) The difference of the largest value and the median.
Note: Let us start by finding the "median". This will help us find the correct values for the descriptions in "Numbers 2 & 4" above. The "median" would be the middle number within a data set, when the values are placed in smallest to largest (or, largest to smallest). However, our data set contains an EVEN number [specifically, "8" (eight)] values. In these cases , we take the 2 (two) numbers closest to the middle, and find the "mean" of those 2 (two) numbers; and that value obtained is the median. So, in our case, the 2 (two) numbers closest to the middle are: "36 & 41". To get the "mean" of these 2 (two) numbers, we add them together to get the sum; and then, we divide that value by "2" (the number of values we are adding): → 36 + 41 = 77; → 77/2 = 38.5 ; → which is the median for our data set; and is a listed value. →Now, examine Description "(#4): The difference of the largest value and the median"—(SEE ABOVE) ; → We can calculate this value. We examine the values within our data set to find the largest value, "49". Our calculated "median" for our dataset, "38.5". So, to find the difference, we subtract: 49 − 38.5 = 10.5 ; which is a given value". →Now, we have 2 (two) remaining values, "11" & "45"; with only 2 (two) remaining "descriptions" to match; →So basically we know that "11" would have to be the "first quartile (Q₁)"; & that "45" would have to be the "third quartile (Q₃)". →Nonetheless, let us do the calculations anyway. →Let us start with the "first quartile"; The "first quartile", also denoted as Q₁, is the median of the LOWER half of the data set (not including the median value)—which means that about 25% of the numbers in the data set lie below Q₁; & that about 75% lie above Q₁.). →Given our data set: {6, 7, 15, 36, 41, 43, 47, 49}; We have a total of 8 (eight) values; an even number of values. The values in the LOWEST range would be: 6, 7, 15, 36. The values in the highest range would be: 41, 43, 47, 49. Our calculated median is: 38.5 . →To find Q₁, we find the median of the numbers in the lower range. Since the last number of the first 4 (four) numbers in the lower range is "36"; and since "36" is LESS THAN the [calculated] median of the data set, "38.5" ; we shall include "36" as one of the numbers in the "lower range" when finding the "median" to calculate Q₁ → So given the lower range of numbers in our data set: 6, 7, 15, 36 ; We don't have a given "median", since we have an EVEN NUMBER of values. In this case, we calculate the MEDIAN of these 4 (four) values, by finding the "mean" of the 2 (two) numbers closest to the middle, which are "7 & 15". To find the mean of "7 & 15" ; we add them together to get a sum; then we divide that sum by "2" (i.e. the number of values added up); → 7 + 15 = 22 ; → 22 ÷ 2 = 11 ; ↔ Q₁ = 11. Now, let us calculate the third quartile; also known as "Q₃". Q₃ is the median of the last half of the higher values in the set, not including the median itself. As explained above, we have a calculated median for our data set, of 38.5; since our data set contains an EVEN number of values. We now take the median of our higher set of values (which is Q₃). Since our higher set of values are an even number of values; we calculate the median of these 4 (four) values by taking the mean of the 2 (two) numbers closest to the center of the these 4 (four) values. This value is Q₃. →Given our higher set of values: 41, 43, 47, 49 ; → We calculate the "median" of these 4 (four) numbers; by taking the mean of the 2 (two) numbers in the middle; "43 & 47". → Method 1): List the integers from "43 to 47" ; → 43, 44, 45, 46, 47; → Since this is an ODD number of integers in sequential order; → "45" is not only the "median"; but also the "mean" of (43 & 47); thus, 45 = Q₃; → Method 2): Our higher set of values: 41, 43, 47, 49 ; → We calculate the "median" of these 4 (four) numbers; by taking the "mean" of the 2 (two) numbers in the middle; "43 & 47"; We don't have a given "median", since we have an EVEN NUMBER of values. In this case, we calculate the MEDIAN of these 4 (four) values, by finding the mean of the 2 (two) numbers closest to the middle, which are "43 & 47." To find the mean of "43 & 47"; we add them together to get a sum; then we divide that sum by "2" (i.e. the number of values added); → 43 + 47 = 90 ; → 90 ÷ 2 = 45 ; → 45 = Q₃ .
One way in which the ideas of Adams rejected the ideas of Thomas Hobbes was when Hobbes championed the idea of a person losing their liberties under a monarchy just for the purpose of having law and order whereas Adams was in favor of allowing a person to retain his liberties.
The correct answer to this open question is the following.
Although there are no options attached we can say the following.
What was at stake between the competing candidates, especially Adams and Jackson was the reputation and legality of the United States election system.
We are talking about the controversial US election of 1824.
In this election, four candidates participated: Andrew Jackson, John Quincy Adams, Henry Clay, and William Crawford. The election resulted very competitively, without a clear winner. In the end, Andrew Jackson won the popular vote. That is why the final result relied on the hands of the House of Representatives. Congress gave the final victory to Jhon Quincy Adams, and candidate Jackson accused the decision to be corrupted.
President Adams appointed Henry Clay as his Secretary of State and that made Andrew Jackson accuse this of a corruption action. The popular mane of this situation was known as the Corrupt Bargain.
1. Because it only causes hassle and inconvenience and they had no business to be in Birmingham which was such a big deal to the Birmingham people. 2 Yes, because Apostle Paul has a similar position as DR. King. 3. He simply points out the result of equality. 4. He had no other way of expressing his ideas but to protest but he realized he must do it in an effective way,. 5. Negotiation is only a wise choice if you were being heard and taken seriously. 6. They will continue to suffer if they wait. Nonviolent civil disobedience shows that people want immediate change. 7. King broke the law in order to be heard. The kind of laws he broke were the laws that are unjust. 8. An unjust law is a law that silences and slows people down. 9. Anarcy is only a result of a person's want to disobey, not to cause needed change. 10. People know that God was the ultimate ruler and so they needed to disobey the Roman Empire when they needed to. 11. He was not an extremist because he was operating in the middle ground between two extreme forces. 12. He imagined that the white moderates would realize the oppression that was happening. 13. He points out the time when Christianity was the strongest and most influential religion whose members were very zealous about it they'd do anything to smooth out any opposition. 14. He was able to address some of their concerns but not all.