Answer:
540 is the correct answer. Each mark is an increase of 20.
Answer:

Step-by-step explanation:
The equation of the line through the point
&
can be represented by:

Making m the subject;

∴
we need to carry out the equation of the line through (0,1) and (1,2)
i.e
y - 1 = m(x - 0)
y - 1 = mx
where;

m = 1
Thus;
y - 1 = (1)x
y - 1 = x ---- (1)
The equation of the line through (1,2) & (4,1) is:
y -2 = m (x - 1)
where;


∴

-3(y-2) = x - 1
-3y + 6 = x - 1
x = -3y + 7
Thus: for equation of two lines
x = y - 1
x = -3y + 7
i.e.
y - 1 = -3y + 7
y + 3y = 1 + 7
4y = 8
y = 2
Now, y ranges from 1 → 2 & x ranges from y - 1 to -3y + 7
∴



![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [xy^2]^{-3y+7}_{y-1} \bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%20%5Bxy%5E2%5D%5E%7B-3y%2B7%7D_%7By-1%7D%20%5Cbigg%20%29%20%5C%20dy)
![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [y^2(-3y+7-y+1)]\bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%20%5By%5E2%28-3y%2B7-y%2B1%29%5D%5Cbigg%20%29%20%5C%20dy)
![\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ([y^2(-4y+8)] \bigg ) \ dy](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cint%5E2_1%20%20%5Cbigg%20%28%5By%5E2%28-4y%2B8%29%5D%20%5Cbigg%20%29%20%5C%20dy)

![\iint_D 8y^2 \ dA =8 \bigg [\dfrac{ -4y^4}{4}+\dfrac{8y^3}{3} \bigg ]^2_1](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%5Cdfrac%7B%20-4y%5E4%7D%7B4%7D%2B%5Cdfrac%7B8y%5E3%7D%7B3%7D%20%5Cbigg%20%5D%5E2_1)
![\iint_D 8y^2 \ dA =8 \bigg [ -y^4+\dfrac{8y^3}{3} \bigg ]^2_1](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-y%5E4%2B%5Cdfrac%7B8y%5E3%7D%7B3%7D%20%5Cbigg%20%5D%5E2_1)
![\iint_D 8y^2 \ dA =8 \bigg [ -2^4+\dfrac{8(2)^3}{3} + 1^4- \dfrac{8\times (1)^3}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-2%5E4%2B%5Cdfrac%7B8%282%29%5E3%7D%7B3%7D%20%2B%201%5E4-%20%5Cdfrac%7B8%5Ctimes%20%281%29%5E3%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -16+\dfrac{64}{3} + 1- \dfrac{8}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-16%2B%5Cdfrac%7B64%7D%7B3%7D%20%2B%201-%20%5Cdfrac%7B8%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{64-8}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-15%2B%20%5Cdfrac%7B64-8%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ -15+ \dfrac{56}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20-15%2B%20%5Cdfrac%7B56%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ \dfrac{-45+56}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20%20%5Cdfrac%7B-45%2B56%7D%7B3%7D%5Cbigg%5D)
![\iint_D 8y^2 \ dA =8 \bigg [ \dfrac{11}{3}\bigg]](https://tex.z-dn.net/?f=%5Ciint_D%208y%5E2%20%5C%20dA%20%3D8%20%5Cbigg%20%5B%20%20%5Cdfrac%7B11%7D%7B3%7D%5Cbigg%5D)

Answer:
$21
Step-by-step explanation:
21+42=63
x=63:3
x=$21
Answer: he was 84 years old when he died and the fractional part of a century that he live is 21/25
Step-by-step explanation:
General Douglas MacArthur, one of the leading generals in World War II was born in 1880. He died in 1964. The number of years that he lived would be the year he died - the yea he was born. Therefore,
His age when he died
= 1964 - 1880 = 84 years.
The number of years in a century is 100. Therefore, the fractional part of a century that he lived would be
84/100 = 21/25