Here, Your Original expression is 60x - 24.
Take 12 as common, which is GCD of 24 & 60, 
Therefore, It would be: 
60x - 24
= 12 * 5x - 12 * 2
= 12 (5x - 2)
In short, your Answer would be 12(5x - 2)
Hope this helps!
Photon
        
             
        
        
        
Answer:
They are both correct because, they both used the properties of equality.
Step-by-step explanation:
 
        
             
        
        
        
A quotient of a number and 6
Explanation: Quotient means that you divide something by another. Let's let n be the "number". Therefore, "a quotient of a number and 6" refers to n6 or n÷6 .
 
        
                    
             
        
        
        
Answer:
3
Step-by-step explanation:
find value at  12 =12
find value at 10 =    6 
  so it changes   + 6    for a change from 10 to 12
6/2 = 3   
 
        
                    
             
        
        
        
So, the definite integral  
Given that 
 
 
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4    - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
  ,
, 
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932