Answer:
JADAAAAAA! I snuck on brainly while im at the library! get on rob lox!
(a) If <em>f(x)</em> is to be a proper density function, then its integral over the given support must evaulate to 1:

For the integral, substitute <em>u</em> = <em>x</em> ² and d<em>u</em> = 2<em>x</em> d<em>x</em>. Then as <em>x</em> → 0, <em>u</em> → 0; as <em>x</em> → ∞, <em>u</em> → ∞:

which reduces to
<em>c</em> / 2 (0 + 1) = 1 → <em>c</em> = 2
(b) Find the probability P(1 < <em>X </em>< 3) by integrating the density function over [1, 3] (I'll omit the steps because it's the same process as in (a)):

Answer:
1700 tornillos
Step-by-step explanation:
Dado que la máquina produce un 3% de tornillos defectuosos en un día. Produjo 51 tornillos defectuosos en un día.
Deje que el número total de tornillos producidos ese día sea x
Por lo tanto;
3% de x = 51
3/100 * x = 51
x = 51 * 100/3
x = 1700 tornillos
Answer:
Step-by-step explanation:
g(x) = (x+4)² - 5
Answer:
x = 32 in
Step-by-step explanation:
8/34 = x/136
34x = 1088
x = 32 in