First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:

And the derivative of x:

Now, we can calculate the area of the surface:

We could calculate this integral (not very hard, but long), or use
(1),
(2) and
(3) to get:



Calculate indefinite integral:

And the area:
![A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}](https://tex.z-dn.net/?f=A%3D2%5Cpi%5Cint%5Climits_0%5E%7B10%7Dx%5Csqrt%7B4x%5E2%2B1%7D%5C%2Cdx%3D2%5Cpi%5Ccdot%5Cdfrac%7B1%7D%7B12%7D%5Cbigg%5B%5Cleft%284x%5E2%2B1%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cbigg%5D_0%5E%7B10%7D%3D%5C%5C%5C%5C%5C%5C%3D%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cleft%5B%5Cbig%284%5Ccdot10%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cbig%284%5Ccdot0%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5CBig%28%5Cbig401%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5CBig%29%3D%5Cboxed%7B%5Cdfrac%7B401%5E%5Cfrac%7B3%7D%7B2%7D-1%7D%7B6%7D%5Cpi%7D)
Answer D.
Not possible, we can't answer the question if we can't see the dimensions.
#BestAnswer
Answer: Subtraction property of equality.
Step-by-step explanation:
n + 9 = -3
You are trying to move 9 from one side to the other. To do that, you have to do the <em>inverse operation</em> and <u>subtract</u> nine from both sides. Your result would be n = -12.
Answer:
-136
Step-by-step explanation:
We have to find the determinant of the following matrix:
![\left[\begin{array}{ccc}-4&5&6\\0&4&4\\-2&-5&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C0%264%264%5C%5C-2%26-5%264%5Cend%7Barray%7D%5Cright%5D)
We can find the determinant by expanding via 1st column. i.e. by taking each element of 1st column and multiplying it by its co-factor matrix as shown below:
det ![\left[\begin{array}{ccc}-4&5&6\\0&4&4\\-2&-5&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C0%264%264%5C%5C-2%26-5%264%5Cend%7Barray%7D%5Cright%5D)
= ![(-4 \times det \left[\begin{array}{cc}4&4\\-5&4\end{array}\right]) - (0 \times (-4 \times det \left[\begin{array}{cc}5&6\\-5&4\end{array}\right]))+ ((-2) \times det\left[\begin{array}{cc}5&6\\4&4\end{array}\right])\\\\ =-4 \times (16 + 20)-(0)+(-2 \times 20-24)\\\\ =-4(36)+(-2(-4))\\\\ =-144+8\\\\ =-136](https://tex.z-dn.net/?f=%28-4%20%5Ctimes%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%264%5C%5C-5%264%5Cend%7Barray%7D%5Cright%5D%29%20-%20%280%20%5Ctimes%20%28-4%20%5Ctimes%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%266%5C%5C-5%264%5Cend%7Barray%7D%5Cright%5D%29%29%2B%20%28%28-2%29%20%5Ctimes%20det%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%266%5C%5C4%264%5Cend%7Barray%7D%5Cright%5D%29%5C%5C%5C%5C%20%3D-4%20%5Ctimes%20%2816%20%2B%2020%29-%280%29%2B%28-2%20%5Ctimes%2020-24%29%5C%5C%5C%5C%20%3D-4%2836%29%2B%28-2%28-4%29%29%5C%5C%5C%5C%20%3D-144%2B8%5C%5C%5C%5C%20%3D-136)
The notation det() stands for determinant of the matrix.
Therefore, the determinant of the given matrix is -136
Answer:
275
Step-by-step explanation:
313 + 56= 369
369- 94= 275