Answer:
<em>I HAD THE SAME QUESTION AND SEARCHED IT UP AND GOT THE ANSWERS.</em>
Explanation:
Answer:
Explanation:
This is a problem based on time dilation , a theory given by Albert Einstein .
The formula of time dilation is as follows .
t₁ = 
t is time measured on the earth and t₁ is time measured by man on ship .
A ) Given t = 20 years , t₁ = ? v = .4c

=1.09 x 20
t₁= 21.82 years
B ) Given t = 5 years , t₁ = ? v = .2c

=1.02 x 5
t₁= 5.1 years
C ) Given t = 10 years , t₁ = ? v = .8c

=1.67 x 10
t₁= 16.7 years
D ) Given t = 10 years , t₁ = ? v = .4c

=1.09 x 10
t₁= 10.9 years
E ) Given t = 20 years , t₁ = ? v = .8c

=1.67 x 20
t₁= 33.4 years
5. The jogger's velocity is a constant 3.55 m/s between t = 4 s and t = 8 s.
6. Given a linear plot of velocity, the acceleration is determined by the slope of the line. Take any two points on the part of the plot after t = 8 s - for instance, we see it passes through (8 s, 3.5 m/s) and (10 s, 4 m/s) - and compute the slope:
(4 m/s - 3.5 m/s)/(10 s - 8 s) = (0.5 m/s)/(2 s) = 0.25 m/s^2
7. This amounts to finding the area between the velocity function and the time axis and between t = 4 s and t = 8 s. During this time, the velocity is 3.5 m/s. The time interval lasts 4 s. So the distance covered is
(3.5 m/s)*(4 s) = 14 m
8. After 4 seconds, Jimmy's speed decreases from 30.0 m/s to 27.2 m/s, so his acceleration (assuming it was constant) was
a = (27.2 m/s - 30.0 m/s)/(4 s) = -0.200 m/s^2
It's unclear what is meant by "rate of acceleration", since the acceleration is itself a rate. But maybe they just mean to ask for the acceleration, or possibly the magnitude?
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake