Answer:
an idealized cycle of processes undergone by rocks in the earth's crust
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
A place that is cold because of an increase in altitude has a mountain area climate or simply, mountain climate. An area that is high in altitude typically has a colder temperature because of the increased amount of rainfall they have. Also, air tends to cool as it rises in temperature.
Answer:
C. Basic swimming capability.
Explanation:
one of the way before participating in any water-based sport is know how to do the basic swimming way.
Answer:
1. the voltage will be 2.35×12.5 = 29.4V
2. the resistance would be 9.0/6.2= 1.45ohms
3. in series they will add up thus 4+8+12= 24ohms
4. in parallel it will be 2.18ohms