Answer:
j(x) = [ (3/10) cookie/student ]x
Step-by-step explanation:
The "unit rate" here is
3 jumbo cookies
------------------------- = (3/10) cookie/student
10 students
Then the number of cookies needed to feed x students is
j(x) = [ (3/10) cookie/student ]x
Answer:
Step-by-step explanation:
f(x) = x2 + 2x - 2 should be rewritten using " ^ " to indicate exponentiation:
f(x) = x^2 + 2x - 2.
We find a couple of key points and use the fact that this parabola is symmetric about the line
-2
x = ----------- = -1. When x = -1, y = f(-1) = (-1)^2 + 2(-1) - 2, or 1 - 2 -2, or -3.
2(1)
Thus the vertex is at (-1, -3). The y-intercept is found by letting x = 0: y = -2. The axis of symmetry is x = -1.
Graph x = -1 and then reflect this y-intercept (0, -2) about the line x = -1, obtaining (-2, -2). If necessary, find 1 or two more points (such as the x-intercepts).
To find the roots (x-intercepts), set f(x) = x^2 + 2x - 2 = 0 and solve for x.
Completing the square, we obtain x^2 + 2x + 1 - 2 = + 1, or (x + 1)^2 = 3.
Taking the square root of both sides yields x + 1 = ±√3. One of the two roots is x = 1.732 - 1, or 0.732, so one of the two x-intercepts is (0.732, 0).
Answer:
The quotient of two integers may not always be an integer.
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.
Step-by-step explanation:
The student is not largely correct!
The sum, difference, and product of two integers is indeed always an integer.
But, the quotient of two integers may not always be an integer.
- For example, the quotient of integers 4 and 2 will be an integer.
i.e.
4/2 = 2
- But, if we take the quotient of 2 and 3, the result will not be an integer.
i.e.
2/3 = 0.67
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.
It only has one solution. x= 16 and y = -12
Answer:
1/x^24
Step-by-step explanation:
(x^-6/x^2)^3 multiply the powers inside the parenthesis by power outside of the parenthesis to get rid of parenthesis
x^-6×3/x^2×3 = x^-18/x^6
subtract the denominator's power from nominator's power
x^-18-6 = x^-24 ➡ 1/x^24