Answer:
C. y+5=-4(x-2)
Step-by-step explanation:
Answer:
C. x = 3, y = 2
Step-by-step explanation:
If both triangles are congruent by the HL Theorem, then their hypotenuse and a corresponding leg would be equal to each other.
Thus:
x + 3 = 3y (eqn. 1) => equal hypotenuse
Also,
x = y + 1 (eqn. 2) => equal legs
✔️Substitute x = y + 1 into eqn. 1 to find y.
x + 3 = 3y (eqn. 1)
(y + 1) + 3 = 3y
y + 1 + 3 = 3y
y + 4 = 3y
y + 4 - y = 3y - y
4 = 2y
Divide both sides by 2
4/2 = 2y/2
2 = y
y = 2
✔️ Substitute y = 2 into eqn. 2 to find x.
x = y + 1 (eqn. 2)
x = 2 + 1
x = 3
The problem says that the expression (3x + 5)(5x − 1) <span>represents the area of the floor of the building in square meters. Therefore, to solve this problem you have to follow the proccedure shown below.
1. First, to simplify the expression (3x + 5)(5x − 1) you must apply the distributive property. Then, you obtain:
15x</span>²-3x+25x-5
2. Then, you have:
15x²+22x-5
3. As you can see, the correct answer is the last option: 15x²+22x-5
Answer: (x,y) → (x - 2, y - 8)
Step-by-step explanation:
Two units to the left would mean decreasing value on the x-axis, making it -2.
Eight units down would, again, mean decreasing value on the y-axis, making it -8.
Therefore, (x,y) → (x - 2, y - 8) is the correct translation rule.
I hope this helps :)
I get it, Geometry can be pretty difficult sometimes... I'm in it right now lol
The volume of the solid objects are 612π in³ and 1566πcm³
<h3>Volume of solid object</h3>
The given objects are composite figures consisting of two shapes.
The volume of the blue figure is expressed as;
Volume = Volume of cylinder + volume of hemisphere
Volume = πr²h + 2/3πr³
Volume = πr²(h + 2/3r)
Volume = π(6)²(13+2/3(6))
Volume = 36π(13 + 4)
Volume = 612π in³
For the other object
Volume = Volume of cylinder + volume of cone
Volume = πr²h + 1/3πr²h
Volume = π(9)²(15) + 1/3π(9)²(13)
Volume= 81π (15+13/3)
Volume= 1566πcm³
Hence the volume of the solid objects are 612π in³ and 1566πcm³
Learn more on volume of composite figures here: brainly.com/question/1205683
#SPJ1