Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37
Answer:
Explanation:
Generally, length of vector means the magnitude of the vector.
So, given a vector
R = a•i + b•j + c•k
Then, it magnitude can be caused using
|R|= √(a²+b²+c²)
So, applying this to each of the vector given.
(a) 2i + 4j + 3k
The length is
L = √(2²+4²+3²)
L = √(4+16+9)
L = √29
L = 5.385 unit
(b) 5i − 2j + k
Note that k means 1k
The length is
L = √(5²+(-2)²+1²)
Note that, -×- = +
L = √(25+4+1)
L = √30
L = 5.477 unit
(c) 2i − k
Note that, since there is no component j implies that j component is 0
L = 2i + 0j - 1k
The length is
L = √(2²+0²+(-1)²)
L = √(4+0+1)
L = √5
L = 2.236 unit
(d) 5i
Same as above no is j-component and k-component
L = 5i + 0j + 0k
The length is
L = √(5²+0²+0²)
L = √(25+0+0)
L = √25
L = 5 unit
(e) 3i − 2j − k
The length is
L = √(3²+(-2)²+(-1)²)
L = √(9+4+1)
L = √14
L = 3.742 unit
(f) i + j + k
The length is
L = √(1²+1²+1²)
L = √(1+1+1)
L = √3
L = 1.7321 unit
Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
The answer is; Irregular.
Answer:
The door will move when the forces exerted by each individual becomes unbalanced.
Explanation:
The Door will only move when the forces exerted by each of the individual is unbalanced i.e. when the Torque is unbalanced
This is because there will only be a reaction or movement of an object when the applied force > resistant force acting on the object.
example : An object at rest will only move when the applied force is greater than the frictional forces acting on the object at rest.