<span>Yes, it's possible to hoist the child up.
Let's first determine the maximum amount of pull that the woman can exert. That will be the simple product of her weight and the coefficient of static friction with her shoes and the ground. So
0.8 * 190 = 152.
So far, so good, since 152 is greater than the boy's 80 lbs. But the cable rubs at the cliff edge and that means that the lady has to pull harder. Let's see how much harder.
There will be 80 lbs of tension on the cable, pressing against the cliff edge. So let's multiply by the coefficient of friction to get how much that is
0.2 * 80 = 16
So friction will take 16 lbs of effort to overcome. So the lady needs to pull with 80 + 16 = 96 lbs of force to move the boy. And since we've determined earlier that she can pull with up to 152 lbs of force, she can easily hoist the child up.</span>
True......................................(just added the dots because I needed more characters)
Answer:
Here are a few:
1) The orbital radius of these planets is ridiculously small an in no way representative of their actual radii.
2) The planets will only line up like that once every 5200 years, making this very unrepresentative of their usual relations - although this does make their order in distance from the sun.
3) The nebulae, comet, lens flare, and other junk in the background is incorrect.
4) If this is meant as a representation of the planets, then Pluto should not be there as it is now considered a planetoid.
5) The planets are incorrectly scaled both to each other and to the sun.
As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
![Kinetic\ energy\ [K.E]\ =\frac{1}{2} mv^2](https://tex.z-dn.net/?f=Kinetic%5C%20energy%5C%20%5BK.E%5D%5C%20%3D%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
![=\frac{1}{2}50kg*[1000\ m/s]^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D50kg%2A%5B1000%5C%20m%2Fs%5D%5E2)

Here, J stands for Joule which is the S.I unit of energy.