Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
we assume the acceleration is constant. we choose the initial and final points 1.40s apart, bracketing the slowing-down process. then we have a straightforward problem about a particle under constant acceleration. the initial velocity is v xi =632mi/h=632mi/h( 1mi 1609m )( 3600s 1h )=282m/s (a) taking v xf =v xi +a x t with v xf =0 a x = t v xf −v xf = 1.40s 0−282m/s =−202m/s 2 this has a magnitude of approximately 20g (b) similarly x f −x i = 2 1 (v xi +v xf )t= 2 1 (282m/s+0)(1.40s)=198m
Answer:
Please give the context of questions
Explanation:
It really helps people answer your questions. thanks
Answer:
Inertia : a property of matter by which it continue in its existing state of rest or uniform motion in a straight line, unless that state is changed by external force.
HOPE ITS HELPS!!