Since the frequency of sound in a medium is constant, therefore, the concert-goers would hear the low notes and high notes at the same time.
<h3>What is a dispersive medium?</h3>
A dispersive medium is a medium which spreads out or disperses a substance passing through it.
Since CO2 is a dispersive medium, it means sound waves passing through it would be dispersed based on wavelength.
The note of a sound depends on its frequency, the higher the frequency, the higher the note.
Frequency of sound is constant, therefore, the concert-goers would hear the low notes and high notes at the same time.
Learn more about dispersion of sound at: brainly.com/question/781734
Question: Predicting the shape of a molecule is relatively straight forward. A molecule's shape will always be determined by the number of electron pairs around the central atom. The number of electron pair corresponds to the number of atoms that are bound to the central atom of the molecule. For example, water contains two hydrogen atom bound to one atom of oxygen, giving the molecule a linear geometry.
Suppose that the model presented by student 1 is correct. Based on the information provided, what would be the bond angle in a molecule of perchlorate ion.
Answer: Suppose that the model presented by student 1 is correct The (perchlorate ion) will be a tetrahedral shape, O-Cl-O bond angle 109.5 due to four groups of bonding electrons and no lone pairs of electrons.
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
Answer:
The correct answer is C. 45.5 lbs.
Explanation:
In a second class lever, the load is located between the point in which the force is exerted and the fulcrum.
The formula for any problem involving a lever is:

Where F_e is the effort force, d_e is the total length of the lever, F_l is the load that can be lifted and d_l is the distance between the point of the effort and the fulcrum.
The parameter of the formula that you need is F_l:

The conversion from feet to inches is 1 ft is equal to 12 inches. In this case, 5 ft are equal to 60 inches.

F_l=45.5 lbs