Well 8x25x23 = 4,600 but what do you need to subtract by?
Answer:
300 is your answer
Step-by-step explanation:
If y= 11
3(11) - 5 = 28
33 - 5 = 28
answer is D
Part 1: Answer:
(x+1)(x+1)(x-6) = x^3 - 4x^2 - 11x - 6
Step-by-step explanation:
To make r a root, include (x-r) as a factor. (-1+1)(-1+1)(-1-6) is zero even though (-1-6) isn't.
(6+1)(6+1)(6-6) is zero.
Part 2 Answer:
Standard form: y = -x^4 + 12
Degree 4
left end goes down, right end goes down.
Step by step: apply the definitions of standard form, polynomial degree, and "end behavior". In other words, read the textbook.
Part 3: Answer: x = 3, x = 8
Step by step:
x^2-11x = -24
x^2-11x+24 = 0
(x-3)(x-8) = 0
x = 3 or x = 8
Part 4a Answer:
quotient 2x^2 + x - 3
remainder 1
Step by step:
2x^2 + x - 3
___________________
x-4 ) 2x^3 - 7x^2 - 7x + 13
2x^3 - 8x^2
__________
0 + x^2 - 7x + 13
x^2 - 4x
____________
0 - 3x + 13
- 3x + 12
______
1
Part 4b answer:
quotient 2x^2 - 6x + 2
remainder -20
Step by step: you have to know exactly what you are doing. Refer to textbook or Wikipedia.
dividend 2x^3 +14x^2 - 58x
divisor x+10
leading coefficient of divisor must be 1
write coefficients of dividend at top
write coefficients of dividend at left
| 2 14 -58 0
-10 | -20 60 -20
___________
| 2 -6 2 -20
Coefficients of quotient are 2 -6 2
Remainder is -20
quotient = 2x^2 - 6x + 2
Answer:
See attached diagram
Step-by-step explanation:
Graph the solution of the inequality
First, draw the dotted line
(dotted because the sign of the inequality is <). Then determine wich part of the coordinate plane should be shaded. Since the origin's coordinates satisfy the inequality, then this point should belong to the region (red part on the diagram).
Graph the solution of the inequality
First, draw the solid line
(solid because the sign of the inequality is ≥). Then determine wich part of the coordinate plane should be shaded. Since the origin's coordinates satisfy the inequality, then this point should belong to the region (blue part on the diagram).
The intersection of both regions is the solution of the system of two inequalities.