Answer:
Starch is a viable indicator in the titration process because it turns deep dark blue when iodine is present in a solution. When starch is heated in water, decomposition occurs and beta-amylose is produced
Answer:
The student is Incorrect
Explanation:
Even if you break a magnet the poles still remains same. There is no
difference in the magnet Both north and south pole will be there even if you
cut it in to small pieces when you cut it into pieces, if suppose you break 2
magnets and put north and north together it will repel whereas if there are
different poles like north and south it will attract, so even if you break one
single magnet the different poles will attract, Hence the student is incorrect.
Please mark me as brainliest
<h3><u>
Thank you </u>:)</h3>
Answer:
34.9 g of Zn(OH)₂ is the maximum mass that can be formed
Explanation:
Let's state the reaction:
ZnO(s) + H₂O(l) → Zn(OH)₂ (aq)
First of all, we need to determine the moles of each reactant and state the limiting:
28.6 g . 1mol /81.38 g = 0.351 moles of ZnO
9.54 g . 1mol /18 g = 0.53 moles of water
As ratio is 1:1, for 0.53 moles of water, we need 0.53 moles of ZnO, but we only have 0.351, so the limiting reactant is the ZnO.
Ratio with the product is also 1:1. From 0.351 moles of oxide we can produce 0.351 moles of hydroxide. Let's calculate the mass:
0.351 mol . 99.4 g /1mol = 34.9 g
The proton which is easily abstracted in
1-Benzyl-3-propylbenzene is the proton which is present on carbon atom in between two phenyl rings, or the central carbon which is shared by two benzene rings.
This easy abstraction of proton is due to its high acidity. Remember those species are always more acidic whose
conjugate base is stable. Like the acidity of carboxylic acid is due to stability of the
acetate ion.
In our case the stability of conjugate base arises due to
stability of negative ion due to resonance. As shown below, the negative charge can delocalize on both rings.
I have shown the resonance of negative ion on both Phenyl rings with
Blue and
Pink colors.<span />
Answer:
There are 72grams in 4 moles of H20