Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Molar mass ( CuSO₄) = 159.609 g/mol
159.609 g ----------------- 6.02 x 10²³ molecules
? g ------------------ 3.36 x 10²³ molecules
mass = ( 3.36 x10²³) x 159.609 / 6.02 x 10²³
mass = 5.36 x 10²⁴ / 6.02 x 10²³
mass = 8.90 g
hope this helps!
<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Electronegativity is defined as the tendency of an atom to attract the shared pair of electrons towards itself whenever a bond is formed.
This property increases as we move from left to right across a period because the number of charge on the nucleus gets increased and electrons are attracted more towards the nucleus.
This property decreases as we move from top to bottom in a group because the electrons get add up in the new shells which make them further away from the nucleus.
Thus, the correct answer is Option A.
Answer:
18.3%
Explanation:
Add the numbers together, and then take the number of grams of the substance, in this case copper, not coppper lol. divide the .45 by 2.45 to get 18.3
There are eight protons in an Oxygen's nucleus.