The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer:
The answer is "Option B"
Explanation:
From the query, the following knowledge is derived:
Yield in percentage = 47%
Performance of theory = 4860 g
Actual yield Rate =?
The percentage return is defined simply by the ratio between both the real return as well as the conceptual return multiplied by the 100. It's also represented as numerically:
Now We can obtain the percent yield as followed using the above formula:

The value of the Actual yield Rate =

The Actual yield Rate= 2284.2 g.
They are called carcinogens
Answer:
0.0125 mol.
Explanation:
<em>Molarity of a solution is the no. of moles of a solute per 1.0 L of the solution.</em>
<em></em>
M of HCl = 0.5 mol/L.
V = 25.0 mL = 0.025 L.
<em>∴ no. of moles of HCl present in the flask at this time = MV</em> = (0.5 mol/L)(0.025 L) = <em>0.0125 mol.</em>