AAS stands for "angle-angle-side." This states that if two angles and a non-included side of one triangle are congruent to the corresponding two angles and non-included side of another triangle, then the triangles are congruent.
In these triangles, we have ∠CAB ≅ ∠CDB given to us to begin with. Throughout the proof, we find that ∠ABC ≅ ∠DCB. We also have that CB is congruent to itself. This is two angles and a side not included, so this is AAS.
Rotation of a point through 90-degree is about he origin in clockwise direction when point M(h,k) is rotated about the origin O through 90-degree in clockwise direction