1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
7

4. A 1,000 kg truck moving at 10 m/s runs into a concrete wall. It takes 0.5 seconds for the truck to conipietery

Physics
2 answers:
murzikaleks [220]3 years ago
4 0
H .multiply the numbers
Maru [420]3 years ago
3 0

Answer:

\large \boxed{\text{h. 20 000 N}}  

Explanation:

Force is the change in momentum over time

F = Δp/Δt

1. Calculate the change in momentum

p₁ = mv₁ = 1000 kg × 10 m/s = 10 000 kg·m·s⁻¹

p₂ = 0

Δp = p₂ - p₁= (0 - 10 000) kg·m·s⁻¹ = -10 000 kg·m·s⁻¹

2. Calculate the force

\begin{array}{rcl}F & = & \dfrac{\Delta p}{\Delta t}\\\\& = & \dfrac{-10 000 \text{ kg$\cdot$m$\cdot$ s}^{-1}}{\text{ 0.5 s}}\\\\& = & \textbf{-20 000 N}\\\end{array}\\\text{The negative sign shows that the force is exerted opposite to the direction of motion.}\\\text{The magnitude of the force is $\large \boxed{\textbf{20 000 N}}$}

You might be interested in
Use a common denominator to find-2/3 + -4/5​
Juliette [100K]

Answer:

-22/15

Explanation:

the least common denominator is  15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15

Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15

If you add -10/15+ -12/15 you get -22/15

6 0
4 years ago
While looking at a cliff, you observe that three visible layers of rocks are tilted about 30 degrees. There are four straight ho
xxTIMURxx [149]

Answer:

the principle of original horizontality and the principle of superposition

Explanation:

The <em>principle of horizontality</em> states that layers of sediment are originally deposited horizontally under the influence of gravity.

The <em>principle of superposition</em> states that the oldest layer layer is at the bottom and each layer above it is younger, with the youngest being at the top.

Unconformities help us find the age of different layers. An unconformity is a surface in which no new solid matter is deposited after a long geologic interval. <em>Angular unconformity </em>is a type of unconformity which different kinds of stratum were tilted or folded before deposition of younger layers of solid matter above the unconformity. Once the layers were folded and tilted, the older layers of the solid matter eroded, then the younger layers were deposited on the older layers. There <em>angular unconformity </em>is the contact between young and old layers of solid matter.

Therefore, these two principles therefore describe how the tilted layers are older than horizontal layers.

3 0
3 years ago
What is F = m x a in Newton's laws of motion?
madam [21]

Answer:

This is Newton's second law.

<u>Newton's second law text:</u>

(If a resultant force acts on a body, then an acceleration will give it an acceleration, the magnitude of which is directly proportional to the amount of the net force, and a direction is in the direction of the net force itself)

F=ma

net force = mass x acceleration

I hope I helped you^_^

8 0
3 years ago
Somebody help me please
Lesechka [4]
I wouldn't be 1000 but I have a feeling your best bet will be B
8 0
3 years ago
A plane electromagnetic wave, with wavelength 4.1 m, travels in vacuum in the positive direction of an x axis. The electric fiel
marusya05 [52]

(a) 7.32\cdot 10^7 Hz

The frequency of an electromagnetic waves is given by:

f=\frac{c}{\lambda}

where

c=3.0\cdot 10^8 m/s is the speed of light

\lambda=4.1 m is the wavelength of the wave in the problem

Substituting into the equation, we find

f=\frac{3.0\cdot 10^8 m/s}{4.1 m}=7.32\cdot 10^7 Hz

(b) 4.60\cdot 10^8 rad/s

The angular frequency of a wave is given by

\omega = 2\pi f

where

f is the frequency

For this wave,

f=7.32\cdot 10^7 Hz

So the angular frequency is

\omega=2\pi(7.32\cdot 10^7 Hz)=4.60\cdot 10^8 rad/s

(c) 1.53 m^{-1}

The angular wave number of a wave is given by

k=\frac{2\pi}{\lambda}

where

\lambda is the wavelength of the wave

For this wave, we have

\lambda=4.1 m

so the angular wave number is

k=\frac{2\pi}{4.1 m}=1.53 m^{-1}

(d) 1.03\cdot 10^{-6}T

For an electromagnetic wave,

E=cB

where

E is the magnitude of the electric field component

c is the speed of light

B is the magnitude of the magnetic field component

For this wave,

E = 310 V/m

So we can re-arrange the equation to find B:

B=\frac{E}{c}=\frac{310 V/m}{3\cdot 10^8 m/s}=1.03\cdot 10^{-6}T

(e) z-axis

In an electromagnetic wave, the electric field and the magnetic field oscillate perpendicular to each other, and they both oscillate perpendicular to the direction of propagation of the wave. Therefore, we have:

- direction of propagation of the wave --> positive x axis

- direction of oscillation of electric field --> y axis

- direction of oscillation of magnetic field --> perpendicular to both, so it must be z-axis

(f) 127.5 W/m^2

The time-averaged rate of energy flow of an electromagnetic wave is given by:

I=\frac{E^2}{2\mu_0 c}

where we have

E = 310 V/m is the amplitude of the electric field

\mu_0 is the vacuum permeability

c is the speed of light

Substituting into the formula,

I=\frac{(310 V/m)^2}{2(4\pi\cdot 10^{-7} H/m) (3\cdot 10^8 m/s)}=127.5 W/m^2

(g) 1.53\cdot 10^{-8} kg m/s

For a surface that totally absorbs the wave, the rate at which momentum is transferred to the surface given by

\frac{dp}{dt}=\frac{A}{c}

where the <S> is the magnitude of the Poynting vector, given by

=\frac{EB}{\mu_0}=\frac{(310 V/m)(1.03\cdot 10^{-6} T)}{4\pi \cdot 10^{-7}H/m}=254.2 W/m^2

and where the surface is

A = 1.8 m^2

Substituting, we find

\frac{dp}{dt}=\frac{(254.2 W/m^2)(1.8 m^2)}{3\cdot 10^8 m/s}=1.53\cdot 10^{-8} kg m/s

(h) 8.47\cdot 10^{-7} N/m^2

For a surface that totally absorbs the wave, the radiation pressure is given by

p=\frac{}{c}

where we have

=254.2 W/m^2

c=3\cdot 10^8 m/s

Substituting, we find

p=\frac{254.2 W/m^2}{3\cdot 10^8 m/s}=8.47\cdot 10^{-7} N/m^2

8 0
3 years ago
Other questions:
  • Part 1: A rope has one end tied to a vertical support. You hold the other end so that the rope is horizontal. If you move the en
    12·1 answer
  • How do you find the density of an object?
    9·2 answers
  • What is a population?
    13·1 answer
  • Find the magnitude of the average induced emf in the coil when the magnet is turned off and the field decreases to 0 T in 2.8 s
    11·1 answer
  • When does the nuclear membrane disappear?
    11·1 answer
  • What does frequency describe?
    7·2 answers
  • If mass1 of a student is 70 kg and mass of the Jupiter is 1.901 x 10^27 kg 1
    9·1 answer
  • HEEEEELLLPPPPPP!!!!!!!!!!! PPPPPPPPPPPLLLEAASSEE!!!
    6·1 answer
  • Symptoms of excessive stress include all of the following EXCEPT:
    7·1 answer
  • The
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!