Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Answer:
its The rolling friction is greater than the force of the car’s weight against the hill.
and A force was required to start the car rolling.
Explanation:
Answer:
304.86 metres
Explanation:
The x and y cordinates are
and
respectively
The horizontal distance travelled, 
Making t the subject, 
Since
, we substitute t with the above and obtain

Making d the subject we obtain


d=304.8584
d=304.86m
Free fall is a special case of motion with constant acceleration, because acceleration due to gravity is always constant and downward. For example, when a ball is thrown up in the air, the ball's velocity is initially upward.