The resultant vector is 11√2 km due north east.
<h3><u>Explanation:</u></h3>
The vector is a type of quantity which has both magnitude and direction. This quantities when expressed needs to specify both magnitude and direction.
We need to calculate the magnitude and direction separately.
Here firstly for the magnitude,
The magnitudes are both 11 km and they are at right angles to each other.
So, the resultant magnitude = √(11² +11²) km
=11√2 km
Now for the direction, one vector is due north and the other is due east.
So the resultant vector is due north east.
So the final vector is 11√2 km due North-East.
The correct answer is
<span>c) very small and very large
Let's see this with a few examples:
1) if we have a very small number, such as
</span>

<span>we see that we can write it easily by using the scientific notation:
</span>

<span>2) Similarly, if we have a very large number:
</span>

<span>we see that we can write it easily by using again the scientific notation:
</span>

<span>
</span>
It's definitely not B or C. There are things missing from A and D so we can't narrow it down any farther.
Answer:
1500 mph
Explanation:
Take east to be +x and north to be +y.
The x component of the velocity is:
vₓ = 889 cos 0° + 830 cos 59°
vₓ = 1316.5 mph
The y component of the velocity is:
vᵧ = 889 sin 0° + 830 sin 59°
vᵧ = 711.4 mph
The speed is found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1316.5 mph)² + (711.4 mph)²
v = 1496 mph
Rounded to two significant figures, the jet's speed relative to the ground is 1500 mph.
Answer:
magnitude=34.45 m
direction=
Explanation:
Assuming the initial point P1 of this vector is at the origin:
P1=(X1,Y1)=(0,0)
And knowing the other point is P2=(X2,Y2)=(19.5,28.4)
We can find the magnitude and direction of this vector, taking into account a vector has a initial and a final point, with an x-component and a y-component.
For the magnitude we will use the formula to calculate the distance
between two points:
(1)
(2)
(3)
(4) This is the magnitude of the vector
For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:
(5)
(6)
(7)
Finding
:
(8)
(9) This is the direction of the vector