Answer:
A planet's mass has no effect on its orbit around the Sun.
Explanation:
The kepler's third law tells us:

where
is the orbit period and
is the semi-major axis.
As we can see from the equation, the period depends only on the measure of the semi-major axis
of the orbit, that is, how far a planet is from the sun.
The equation tells us that the closer a planet is to the sun, the faster it will go around it.
The mass does not appear in the equation to calculate the period.
This is why it is concluded from the third law of Kepler that<u> the period, or the orbit of a planet around the sun, does not depend on its mass.</u>
the answer i: A planet's mass has no effect on its orbit around the Sun.
All three windows are the same size.
A has 10 complete waves visible through the window. B has 3, and C has 4.
So A must have the smallest wavelengths.
Answer:
A regulation game consists of 7 innings unless extended because of a tie score or unless shortened because the home team needs none or only a fraction of its 7th inning or unless 1 team is leading by 10 runs after 5 innings.
Explanation:
Respuesta: verifique amablemente la explicación
Explicación:
Dado lo siguiente:
Longitud (L) del cable = 120 m
Diámetro (d) = 2,2 mm (2,2 / 1000) = 2,2 * 10 ^ -3 m
Fuerza (F) = 380 N
Esfuerzo longitudinal = Fuerza / Área
Área = πd² / 4 = (π * (2.2 * 10 ^ -3) ^ 2) / 4
Área = (3.142 * 4.84 * 10 ^ -6)
Área = 0.00000380132 m²
Estrés = Fuerza / Área
Estrés = 380 / 0.00000380132
Esfuerzo longitudinal = 99952128.12 = 9.9952128 * 10^7 Nm^-2
Deformación longitudinal: extensión / longitud
Extensión = 0.10 m
Longitud = 120 m
Deformación longitudinal = 0,1 m / 120 m
Deformación longitudinal = 0.0008333 = 8.33 × 10 ^ -4