1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ELEN [110]
4 years ago
13

Our galaxy contains roughly 250000000000 stars. How many billion is this?

Mathematics
2 answers:
Lyrx [107]4 years ago
8 0
It is 250 billion. Hope this helps
yulyashka [42]4 years ago
8 0
The answer is 250 billion.
You might be interested in
Yall know what to do so imma let yall do your thing<br> Solve for x: 2x – y = (3/4)x + 6.
Studentka2010 [4]

Answer:

x=4y/5 + 24/5

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Plllzzz answer neeeeed heeelp will be brainliest
Firlakuza [10]
The coordinate (2,20) indicates that he rode 20 miles in 2 hours
3 0
3 years ago
Read 2 more answers
camilla paid $1.15 per pound for x pounds of tomatoes. She paid for her tomatoes with $10 and received $4.48 in change. How many
Alika [10]

Answer:

x=4.8\ pounds

Step-by-step explanation:

Let

x-----> the number of pounds of tomatoes Camilla bought

we know that

The equation that represent this situation is equal to

1.15x=10-4.48

Solve for x

1.15x=5.52

x=5.52/1.15

x=4.8\ pounds

5 0
3 years ago
Hey, wanna pair our account on Brainly so we can share the perks? https://brainly.com/invite/4754f4a223dda84b047a17d84e74d496?ut
erastovalidia [21]

Answer:

Step-by-step explanation:

1 answer

7 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Other questions:
  • Write an equation for the line parallel to the x-axis through the point (0,-8)
    12·2 answers
  • Emily was offered a job after college earning a salary of $35,000. She will get a raise
    11·1 answer
  • Given, f(x)=x²-2x+3, find f(-2)
    10·1 answer
  • Bargain Feed Store has a markup rate of 14.1%. What price will the shop charge for a bag of horse feed that cost $12.22 wholesal
    8·1 answer
  • Someone plz answer these <br> https://brainly.com/question/18427880
    14·2 answers
  • Share £280 in the ratio 3:4
    10·2 answers
  • Write the ratio as a fraction in simplest form.
    10·1 answer
  • HELP PLZ. ASAP I need an answer.
    12·1 answer
  • Consider the line y=-5+6.
    5·1 answer
  • Penny buys 3 bouquets of flowers for $3 each and 4 bouquets for $2 each. Which expression gives the total cost of the bouquets t
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!