For the object that has a horizontal velocity component of 6 m/s and a vertical velocity component of 4 m/s we have:
1. The velocity of the object is 7.21 m/s.
2. The angle it makes with the horizontal is 33.7°.
1. The velocity of the object can be found as follows:

Where:
: is the horizontal component of the velocity = 6 m/s
: is the vertical component of the velocity = 4 m/s
Hence, the <u>velocity is</u>:
2. The angle it makes with the <u>horizontal </u>can be calculated with the following trigonometric function:

Where:
θ: is the angle it makes with the horizontal
Therefore, the <u>angle is</u>:

You can learn more about the components of the velocity here: brainly.com/question/2285233?referrer=searchResults
I hope it helps you!
5 a)
Start by arranging the materials by the sonic speed and then their physical state:
- Copper (solid)
- Glass (solid)
- Wood (solid)
- Sea Water (liquid)
- Acetone (liquid)
- Alcohol (liquid)
- Helium (gas)
- Carbon dioxide (gas)
What trend do you identify from these data? Here's what I've got:

5 b)
The way microscopic particles are arranged in a substance helps distinguish between different physical states:
- Particles in a solid are held tightly in place with small separation in between; it's hard for particles in a solid to move past one another; solids therefore have shapes that persists over time.
- Particles in a gas are highly mobile- they keep moving AT ALL TIMES. There are large separations between individual particles and therefore gases tend to show no definite shape or volume.
- The arrangement of particles in a liquid is located somewhere in between that of solids and gases. The exact configuration is dependent on the nature of the liquid- for example, molecules in maple syrup are held way closer to each other than those in distilled water are.
Sound travels as a longitudinal wave. As a sound wave passes through a medium, individual particles become excited and gain energy; as they run into others they transfer their energy to the next particle; the sound wave thus propagate across the medium. With a lower average distance between individual particles this action can proceed at a greater rate in average solids than in average liquids, and in average liquids than in average gases. Hence the trend.
If an object is moving with a constant velocity, then by definition it has zero acceleration. So there is no net force acting on the object. The total work done on the object is thus 0 (that's not to say that there isn't work done by individual forces on the object, but the sum is 0 ).
The ramp does 480J of useful work with an efficiency of 80% .
<h3>What is efficiency of work done ?</h3>
- Efficiency is the ratio of the useful energy released by a system to the input energy .
- Mathematically, efficiency of energy = out put energy/ input energy
<h3>
What is the useful work done by the ramp having efficiency 80% and an input work done 600J?</h3>
- The efficiency =output work done/ input work done
- 80% =output work done/ 600J
- output work done =( 80×600)/100
=480J
Thus, we can conclude that the useful work done by the ramp is 480J.
Learn more about efficiency of energy here:
brainly.com/question/14280607
#SPJ1
Answer:
bumper cars colliding- inelastic
man jumping in a cab- perfectly inelastic
mud sticking to car - perfectly inelastic
hat being sat on door being slammed- inelastic
ball bouncing- elastic
Explanation:
In a perfectly inelastic collision, the objects stick together after collision and move with a common velocity. Maximum kinetic energy is lost during such collision.
For an inelastic collision, kinetic energy is partly lost and the colliding objects move apart at different velocities. This is often encountered in real life situations.
For an elastic collision, both momentum and kinetic energy are conserved. The object rebounds with the same relative velocity with which it approached.