Answer:
V=21.0211m/s
Explanation:
Use V=vi+at
So, V=17.46m/s+(1.49m/
)(2.39s)= 21.0211m/s
Take 68.2/60 = 1.137 hr
take 56.9/1.137 = 50.043 mi/hr
take 189/211 = 0.896
24.8/2 = 12.4 m
12.4/82.3 = 0.15s
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers
Answer:
35, I got you bro, i got you
a = ( v(2) - v(1) ) ÷ ( t(2) - t(1) )
2 = ( v(2) - 10 ) ÷ ( 6 - 0 )
2 × 6 = v(2) - 10
v(2) = 12 + 10
v(2) = 22 m/s