Answer:
![Total cost=10x^{2} dollars+\frac{168dollars}{x}](https://tex.z-dn.net/?f=Total%20cost%3D10x%5E%7B2%7D%20dollars%2B%5Cfrac%7B168dollars%7D%7Bx%7D)
Explanation:
First at all, let's see the figure in the attachment where we define:
Width is "x", Lenght must be "2x" and Height is "h".
The volume of a rectangular storage container is defined as:
V=lengh*width*height
So, replacing values, we have:
V=![2x^{2} h](https://tex.z-dn.net/?f=2x%5E%7B2%7D%20h)
Considering that V=14m3 we can clear "h" in function of "x" (the width):
![V=2x^{2} h=14; h=\frac{7}{x^{2}}](https://tex.z-dn.net/?f=V%3D2x%5E%7B2%7D%20h%3D14%3B%20h%3D%5Cfrac%7B7%7D%7Bx%5E%7B2%7D%7D)
Now, we calculate the areas of the container:
![Ax_{1} =x*h\\Ax_{2}=2x*h\\Ax_{3}=2x*x](https://tex.z-dn.net/?f=Ax_%7B1%7D%20%3Dx%2Ah%5C%5CAx_%7B2%7D%3D2x%2Ah%5C%5CAx_%7B3%7D%3D2x%2Ax)
Where: Ax1 is the side 1 area; Ax2 is the side 2 area and Ax3 is the base area
Replacing "h" on the previous equations, we have:
![Ax_{1}=x*h=x*\frac{7}{x^{2} }=\frac{7}{x}\\Ax_{2}=2x*h=2x*\frac{7}{x^{2} }=\frac{14}{x}\\Ax_{3}=x*2x=2x^{2}](https://tex.z-dn.net/?f=Ax_%7B1%7D%3Dx%2Ah%3Dx%2A%5Cfrac%7B7%7D%7Bx%5E%7B2%7D%20%7D%3D%5Cfrac%7B7%7D%7Bx%7D%5C%5CAx_%7B2%7D%3D2x%2Ah%3D2x%2A%5Cfrac%7B7%7D%7Bx%5E%7B2%7D%20%7D%3D%5Cfrac%7B14%7D%7Bx%7D%5C%5CAx_%7B3%7D%3Dx%2A2x%3D2x%5E%7B2%7D)
<em>Remember that the container is open at the top, so we have to calculate just one area in the base. The sides 1 and 2 are 2 of each one</em>.
So, we have: Total area = 2*Ax1 + 2*Ax2 + Ax3
Now for the total cost of materials, we have: Total cost=Cost (2*Ax1) + Cost (2*Ax2) + Cost (Ax3)
For the sides 1 and 2, we have a cost of:
Finally, total cost is:
![Total cost=2*\frac{28 dollars}{x} + 2*\frac{56 dollars}{x} + 10x^{2} dollars\\Total cost=10x^{2} dollars+\frac{168dollars}{x}](https://tex.z-dn.net/?f=Total%20cost%3D2%2A%5Cfrac%7B28%20dollars%7D%7Bx%7D%20%2B%202%2A%5Cfrac%7B56%20dollars%7D%7Bx%7D%20%2B%2010x%5E%7B2%7D%20dollars%5C%5CTotal%20cost%3D10x%5E%7B2%7D%20dollars%2B%5Cfrac%7B168dollars%7D%7Bx%7D)