Answer:
(-2, -8)
x = -2
y = -8
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
13x - 6y = 22
x = y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 13(y + 6) - 6y = 22
- Distribute 13: 13y + 78 - 6y = 22
- Combine like terms: 7y + 78 = 22
- Isolate <em>y</em> term: 7y = -56
- Isolate <em>y</em>: y = -8
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 6
- Substitute in <em>y</em>: x = -8 + 6
- Add: x = -2
Let's simplify step-by-step.
<span><span>12<span>x^2</span></span>+<span>9<span>x^2
</span></span></span>Combine Like Terms:
<span>=<span><span>12<span>x^2</span></span>+<span>9<span>x^2
</span></span></span></span><span>=<span>(<span><span>12<span>x^2</span></span>+<span>9<span>x^2</span></span></span>)
</span></span><span>=<span>21<span>x^<span>2</span></span></span></span>
0.4763 is the answer I got
Answer:
25 more inches
Step-by-step explanation:
Answer:
I'm sorry pls retake the pic really quickly.. I can't see the entire problem!
Then I'll add my answer if I can! Thx!