ASSUMING This is a straight line so we gotta the formula for a straight line which is y=mx+b, where m represents the slope and b represents the y intercept.
First, we know this line passes through (5,8) and (9,2) we can use these for finding the equations. When we know two points, we use this formula:
y-y=m(x-x)
The first y is 8 and the second one is 2
The first x is 5 and the second one is 9
Plug it in:
8-2=m(5-9)
6=m(-4)
6/-4=m <— simplify this
m= -3/2
*NOTE: another way to find m is by calculating it (y-y)/(x-x)
Now we know m, we have to find b.
All you gotta do is plug everything you know back into the equation y=mx+b
y=mx+b
y=-3/2x+b <— now plug in a point we know(x,y)
8=-3/2(5)+b
8=-15/2+b
8-(-15/2)=b
b=8+15/2
b=16/2+15/2
b=31/2 (now you can write be as a fraction or a decimal in your equation, depending on what your teacher told you to use)
*NOTE: it is best to use fractions instead of decimals as it is more accurate sometimes.
Now we know all the variables that need to be known, we just need to rewrite the formula of the equation so the teacher can see.
m=-3/2
b=31/2
We don’t need to plug in x or y since it could have different values (since a straight line has MANY co-ordinates)
SO OUR EQUATION IS=
y=(-3/2)x+31/2
Hope you understand this, feel free to ask me anything!
Answer:
Exact form is 
the decimal form is 5
Step-by-step explanation:
Answer:
Than the baby blanket area is 15 yards. The length is 5 yards and the width is 3 yards.
Essentially 11(4d + 6) = 11*4d + 6*11
44d + 66
9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.