When it comes to this equation, I always stick to good ol' momma bears solutions! Tell that boy to put the rock down, rocks are dangerous!!
From- MommaBoi101
Answer: 2.86 m
Explanation:
To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,
ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)
In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have
mgh + 0 = 0 + KE(f)
To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have
mgh = 1/2mv² + 1/2Iw²
To get the inertia of the bodies, we use the formula
I = [m(R1² + R2²) / 2]
I = [2(0.2² + 0.1²) / 2]
I = 0.04 + 0.01
I = 0.05 kgm²
Also, the angular velocity is given by
w = v / R2
w = 4 / (1/5)
w = 20 rad/s
If we then substitute these values in the equation we have,
0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)
4.9h = 4 + 10
4.9h = 14
h = 14 / 4.9
h = 2.86 m
Answer:
Both balls will hit the ground at the same time
Explanation:
The factor which leads to ball falling is the gravity acting on the ball;
The motions along the path of both balls are independent and both balls will obey the following illustration
Using the third equation of motion
s = ut + ½at²
Where s = distance covered by both balls.
u = initial velocity of both balls. Since both balls start from rest, u = 0m/s
a = acceleration; and it's equal to acceleration due to gravity.
a = g
By substituton
s = 0 * t + ½gt²
s = 0 + ½gt²
s = ½gt²
Make t the subject of formula
gt² = 2s
t² = 2s/g
t = ±√(2s/g)
But time can't be less than 0 (in other words, negative)
So,
t = √(2s/g)
It'll take both balls √(2s/g) time to hit the floor
Explanation:
The orbit of the planet is considered to be stable and does not change over time. This means that the force of gravity and inertia are perfectly balanced. Leading to forward motion of Planet and moons under force of gravity of some other large body(Most probably stars).This is in turns leads to formation of orbit.
There are several main pieces of evidence<span> that support the </span>Big Bang<span> theory. One is the fact that the universe is expanding, proven with something </span>called<span>red shift. The second is something </span>called<span> cosmic microwave background radiation. The third is the abundance of different elements in the universe.</span>