Answer:
a) 
b) 
c) 
d) 
Explanation:
Average translation kinetic energy (
) is given as
....................(1)
where,
k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K
T = Temperature in kelvin
a) at T = 27.8° C
or
T = 27.8 + 273 = 300.8 K
substituting the value of temperature in the equation (1)
we have

b) at T = 143° C
or
T = 143 + 273 = 416 K
substituting the value of temperature in the equation (1)
we have

c ) The translational kinetic energy per mole of an ideal gas is given as:

here
= Avagadro's number; ( 6.02×10²³ )
now at T = 27.8° C


d) now at T = 143° C


The thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
<h3>What is wage speed?</h3>
It should be noted that wave speed simply means the distance that a wave travels during a particular time.
It should be noted that higher tension leads to an increase in the speed of the wave.
Therefore, the thing that happens to the speed of the pulse when you stretch the hose more tightly is that it increases.
Learn more about speed on:
brainly.com/question/13943409
#SPJ4
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
F=mg=Gm1m2/r^2
g=Gm2/r^2
g=2Gm2/(2r)^2=2Gm2/4r^2=Gm2/2r^2
So since there is half times the gravity on this unknown planet that has twice earth's mass and twice it's radius, then the person can jump twice as high. 1.5*2= 3m high
Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s