Answer:
a) 
b) 
c) Towards the center of the centrifuge
Explanation:
a)
Becuse the centrifuge rotates in circular motion, there's an angular acceleration tha simulates high gravity accelerations

with r the radius and ω the amgular velocity, in or case
so:
and g=9.8
solving for ω:


b) Linear speed (v) and angular speed are related by:


c) The apparent weigth is pointing towards the center of the circle, becuse angular acceleration is pointing in that direction.
Answer:
100 newton
Explanation:
newton third law of motion says to every action there is an always an equal and opposite reaction so the magnitude will stay equal but opposite direction
Observe that the object below moves in the negative direction with a changing velocity. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a positive acceleration). The dot diagram shows that each consecutive dot is not the same distance apart (i.e., a changing velocity). The position-time graph shows that the slope is changing (meaning a changing velocity) and negative (meaning a negative velocity). The velocity-time graph shows a line with a positive (upward) slope (meaning that there is a positive acceleration); the line is located in the negative region of the graph (corresponding to a negative velocity). The acceleration-time graph shows a horizontal line in the positive region of the graph (meaning a positive acceleration).
I don't know how I can show you the figure
Answer:
false
Explanation:
If they were farther apart they would be able to slip by through which means that it can go by faster. If the atoms where closer together then yes they would be able to go by slower.
Answer:
Remember that the number of protons in the nucleus determines an element's identity. Chemical changes do not affect the nucleus, so chemical changes cannot change one type of atom into another. The number of protons in a nucleus does change sometimes, however. The identity of the atom, therefore, it is true