He can throw the hammer in the direction opposite to the direction he wants to travel in. The hammer will exert an equal and opposite force on him, as per Newton's third law, and this will help him move towards the space station.
Answer:
288.0 units; that is the electrostatic force of attraction become quadruple of its initial value.
Explanation:
If all other parameters are constant,
Electrostatic Force of attraction ∝ (1/r²)
F = (k/r²) = 72.0
If r₁ = r/2, what happens to F₁
F₁ = (k/r₁²) = k/(r/2)² = (4k/r²) = 4F = 4 × 72 = 288.0 units
Answer:
A. Scientists use seismic computer models to measure the atmospheric conditions above the Earth's crust
Explanation:
why would use atmosphere to study the layers of earth? dont think thats possible
1) <span>yes;2
6*2=12
12*2=24
24*2=48
2)</span><span>Next Term (or nth term) = ar^n-1
</span>
a = first term, i.e. 5
<span>r = common ratio i.e. 3 (as 15/5=3 and 45/15=3 </span>
<span>n = .. </span>
<span>as you already have 1st , 2nd and 3rd terms</span>
<span>substituting now </span>
<span>T4= ar^n-1 </span>
<span>= 5*3^4-1 </span>
<span>= 5*3^3 </span>
<span>= 5*27 </span>
<span>T4 = 135
</span>T5= ar^n-1
<span>= 5*3^5-1 </span>
<span>= 5*3^4 </span>
<span>= 5*81 </span>
<span>T5 = 405 </span>
Answer:
V1 = 2221.33 L
Explanation:
The system is about a ideal gas. Then you can use the equation for ideal gases for a volume V1, temperature T1 and pressure P1:
(1)
And also for the situation in which the variables T, V and P has changed:
(1)
R: constant of ideal gases = 0.082 L.atm/mol.K
For both cases (1) and (2) the number of moles are the same. Next, you solve for n in (1) and (2):

Next, you equal these equations an solve for T2:

Finally you replace the values of P2, V2, T1 and T2:

Hence, the initial volume of the gas is 2221.33 L