1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
12345 [234]
3 years ago
10

Find all solutions for X and check. (different from the other question I asked earlier) thanks!

Mathematics
1 answer:
KiRa [710]3 years ago
4 0
   
\displaystyle  \\ 
17) \\ 
x(5x-10)=0 \\ 
x = 0 ~~\texttt{or}~~5x-10 = 0 \\ 
x_1 = \boxed{0} \\  \\ 
x_2 =  \frac{10}{5} =\boxed{2} \\ 
\texttt{Check: } \\ 
x_1 = 0~~\Longrightarrow ~~ 0(5\cdot 0 - 10) = 0 \cdot (-10) = 0 \\ 
x_2 = 2~~\Longrightarrow ~~ 2(5\cdot 2 - 10) = 2(10 - 10) = 2 \cdot 0 = 0


\displaystyle 18) \\ 
x^2 + 7x-18 = 42 \\ 
x^2 + 7x-18 - 42 =0 \\ 
x^2 + 7x-60 =0 \\ 
.~~~~~7x = 12x - 5x  \\ 
\underbrace{x^2 + 12x} -\underbrace{5x - 60} = 0 \\  \\ 
x(x+12) -5(x+12)=0 \\ 
(x+12)(x-5)=0 \\ 
x + 12 = 0 ~~\texttt{or}~~x-5 = 0 \\  \\ 
x_1 = \boxed{-12} \\ 
x_2 = \boxed{5} \\  \\ 
 \texttt{Check: } \\
x1 = -12 ~~\Longrightarrow~~ (-12)^2 + 7\cdot (-12)-18 = 144-84-18 = 42  \\  \\ 
x2 = 5 ~~\Longrightarrow~~ (5)^2 + 7\cdot (5)-18 = 25+35-18 = 42  \\  \\



You might be interested in
The base of an isosceles triangle is a fourth as long as the two equal sides. write the perimeter of the triangle as a function
jeka57 [31]
Set the length of the base as x, the two equal sides are then 4x each, so the perimeter is x+4x+4x=9x
5 0
4 years ago
Which expression is equivalent to? (first picture) Assume (second picture)
Novay_Z [31]
B -2x8y18
Use photo math it’s helpful
6 0
3 years ago
Colin always takes his laundry to the laundromat for cleaning. Today, he has 5 items for dry cleaning and 12 items for regular w
kari74 [83]

Answer: 7 1/2 pounds

Step-by-step explanation:

7 0
3 years ago
Why are linear functions sometimes symmetric about the y-axis but never symmetric about the x-axis
lina2011 [118]
Test for symmetry about the x-axis: Replace y with (-y). Simplfy the equation. If the resulting equation is equivalent to the original equation then the graph is symmetrical about the x-axis. Example: Use the test for symmetry about the x-axis to determine if the graph of y - 5x2 = 4 is symmetric about the x-axis.
Test for symmetry about the y-axis: Replace x with (-x). Simplfy the equation. If the resulting equation is equivalent to the original equation then the graph is symmetrical about the y-axis. Example: Use the test for symmetry about the y-axis to determine if the graph of y - 5x2 = 4 is symmetric about the y-axis.
I didn't fully understand the question but this is the best I can do! Hope this helps! :D
7 0
3 years ago
The given matrix is the augmented matrix for a linear system. Use technology to perform the row operations needed to transform t
shtirl [24]

Answer:

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

Step-by-step explanation:

As the given Augmented matrix is

\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 1 :

r_{1}↔r_{1} - r_{2}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 2 :

r_{3}↔r_{3} - 8r_{1}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]

Step 3 :

r_{2}↔\frac{r_{2}}{7}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]

Step 4 :

r_{1}↔r_{1} + 14r_{2} , r_{3}↔r_{3} - 124r_{2}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]

Step 5 :

r_{3}↔\frac{r_{3}. 7}{254}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]

Step 6 :

r_{1}↔r_{1} - 4r_{3} , r_{2}↔r_{2} + \frac{1}{7} r_{3}

\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]

∴ we get

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

6 0
3 years ago
Other questions:
  • Dwayne buys ingredients to make a cake. He buys 1/1/2 pounds of flour, 12 ounces of coconut, and 1/1/4 pounds of sugar. What is
    7·1 answer
  • A scientist observes and counts 155 bacteria in a culture. Later, the scientist counts again and finds the number has increased
    10·1 answer
  • Evaluate and simplify if possible:
    6·1 answer
  • What is the square root of 348
    5·1 answer
  • Miki prepared two gallons of a beverage that contains tea and lemonade in the ratio tea:lemonade=3:1. If Miki then added one-hal
    14·1 answer
  • What is the product? [-3 4 2 -5]x[3 -2 1 0]
    8·1 answer
  • What is the Oder of rotation? What is the angle of rotation? Express in degrees and as a fraction of a turn?
    9·1 answer
  • I will mark you brainiest if you can answer this
    14·1 answer
  • Help me please<br><br><br><br> Thanks
    8·1 answer
  • HELP ASAP THIS DUE TODAY FOR MY BRO
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!