The answer to this question is D or the last one
Answer:
11.7 m/s
Explanation:
To find its speed, we first find the acceleration of the center of mass of a rolling object is given by
a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²
a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)
= 9.8 m/s²sin4(1 + 2/3)
= 9.8 m/s²sin4 × (5/3)
= 1.14 m/s²
To find its speed v after rolling for 60 m, we use
v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m
v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s
Explanation:
The given data is as follows.
Velocity of bullet,
= 814.8 m/s
Observer distance from marksman, d = 24.7 m
Let us assume that time necessary for report of rifle to reach the observer is t and will be calculated as follows.
t =
(velocity in air = 343 m/s)
= 0.072 sec
Now, before the observer hears the report the distance traveled by the bullet is as follows.

= 
= 58.66
= 59 (approx)
Thus, we can conclude that each bullet will travel a distance of 59 m.
Answer:
The relationship between the initial stored energy
and the stored energy after the dielectric is inserted
is:
c) 
Explanation:
A parallel plate capacitor with
that is connected to a voltage source
holds a charge of
. Then we disconnect the voltage source and keep the charge
constant . If we insert a dielectric of
between the plates while we keep the charge constant, we found that the potential decreases as:

The capacitance is modified as:

The stored energy without the dielectric is
The stored energy after the dielectric is inserted is:

If we replace in the above equation the values of V and C we get that


Finally

We have the meats Arby’s we beat them kids