Answer:
c) time
Explanation:
time is a fundamental quantity from which other quantities are derived
The time between the successive crusts will give the time period of the wave.
So, the time period, T of the given wave is 0.2 s.
The frequency of a wave is the reciprocal of its time period. That is,
Frequency, ν = 
= 
= 5 Hz
Thus, the frequency of the given travelling periodic wave is 5 Hz.
The spontaneous emission of radiations from an unstable nuclei is known as natural radioactivity. on the other hand, The process of emission of radiations from naturally occurring isotopes when they are bombarded with sub-atomic particles or high levels of X-rays or gamma rays called artificial radioactivity.
The the drift velocity of the electrons is determined by atom vibrations in the crystal lattice.
<h3>How to explain the information?</h3>
Assume we could increase the average time between collisions in a typical metal to get to a limit of zero resistance. The free electrons would therefore be continuously accelerated by a constant applied voltage, according to the classical paradigm of conduction. Both the current and the drift speed would gradually pick up over time.
Although it is not the scenario implied by the question, it is possible to switch to zero resistance by using a superconducting wire instead of the usual metal. In this scenario, the maximum current is constrained, the drift velocity of the electrons is determined by atom vibrations in the crystal lattice, and it is difficult to produce a potential difference across the superconductor.
Learn more about electrons in:
brainly.com/question/860094
#SPJ4
<h3><u>Answer;</u></h3>
<u>An increase in pressure favors the formation of ozone </u>
<h3><u>Explanation;</u></h3>
- Ozone, O3, decomposes to molecular oxygen in the stratosphere according to the reaction
2O3(g) ⇆ 3O2 (g).
- There are more moles of product gas than moles of reactant gas. An increase in total pressure increases the partial pressure of each gas, shifting the equilibrium towards the reactants.
- Therefore; an increase in pressure favors backward reactions towards the formation of ozone.