The initial speed of the shot is 15.02 m/s.
The Shot put is released at a height y<em> </em>from the ground with a speed u. It is released at an angle θ to the horizontal. In a time t, the shot put travels a distance <em>R</em> horizontally.
Pl refer to the attached diagram.
Resolve the velocity u into horizontal and vertical components, u ₓ=ucosθ and uy=u sinθ. The horizontal component remains constant in the absence of air resistance, while the vertical component varies due to the action of the gravitational force.
Write an expression for R.

Therefore,

In the time t, the net displacement of the shotput is y in the downward direction.
Use the equation of motion,

Substitute the value of t from equation (1).

Substitute -2.10 m for y, 24.77 m for R and 38.0° for θ and solve for u.

The shot put was thrown with a speed 15.02 m/s.
<h3><u>Answer;</u></h3>
- Heat is produced
- Light is produced
- Bubbles appear
<h3><u>Explanation;</u></h3>
- Chemical reactions involve the chemical interaction of two or more chemical substances, result in a new substance being formed, and are usually irreversible.
- The signs of chemical reactions include gas formation, energy release in the form of light or flame, heat absorption, precipitate formation, and color change.
Answer: Wave speed= frequency x wavelength
=20 x 3
=60 m/s
Explanation:
Answer:
The transverse component of acceleration is 26.32
where as radial the component of acceleration is 8.77 
Explanation:
As per the given data
u=π/4 rad
ω=u'=2 rad/s
α=u''=4 rad/s

So the transverse component of acceleration are given as

Here


So

The transverse component of acceleration is 26.32 
The radial component is given as

Here

So

The radial component of acceleration is 8.77 
Answer:
produce electronics
Explanation:
The uses of Germanium are recorded beneath: Germanium's principle use is to deliver strong state hardware, semiconductors and fiber optic frameworks. As a phosphor in fluorescent lights.