Answer:
2.00 m/s²
Explanation:
Given
The Mass of the metal safe, M = 108kg
Pushing force applied by the burglar, F = 534 N
Co-efficient of kinetic friction,
= 0.3
Now,
The force against the kinetic friction is given as:

Where,
N = Normal reaction
g= acceleration due to the gravity
Substituting the values in the above equation, we get

or

Now, the net force on to the metal safe is

Substituting the values in the equation we get

or

also,
acceleration of the safe
Therefore, the acceleration of the metal safe will be
acceleration of the safe=
or
acceleration of the safe=
or
acceleration of the safe=
Hence, the acceleration of the metal safe will be 2.00 m/s²
Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s
Answer:
Water
Explanation:
Because it does not conduct much energy.
Answer:
If we have large numbers (b is positive) or small numbers (b is negative), then this way ... 1, and V2i = 100 L, n2i = 5 + 2 + 1 = 8 in vessel 2. ... a good working substance in the barometer.
Answer:
Hi Carter,
The complete answer along with the explanation is shown below.
I hope it will clear your query
Pls rate me brainliest bro
Explanation:
The magnitude of the magnetic field on the axis of a circular loop, a distance z from the loop center, is given by Eq.:
B
= NμοiR² / 2(R²+Z²)³÷²
where
R is the radius of the loop
N is the number of turns
i is the current.
Both of the loops in the problem have the same radius, the same number of turns, and carry the same current. The currents are in the same sense, and the fields they produce are in the same direction in the region between them. We place the origin at the center of the left-hand loop and let x be the coordinate of a point on the axis between the loops. To calculate the field of the left-hand loop, we set z = x in the equation above. The chosen point on the axis is a distance s – x from the center of the right-hand loop. To calculate the field it produces, we put z = s – x in the equation above. The total field at the point is therefore
B
= NμοiR²/2 [1/ 2(R²+x²)³÷² + 1/ 2(R²+x²-2sx+s²)³÷²]
Its derivative with respect to x is
dB
/dx= - NμοiR²/2 [3x/ (R²+x²)⁵÷² + 3(x-s)/(R²+x²-2sx+s²)⁵÷²
]
When this is evaluated for x = s/2 (the midpoint between the loops) the result is
dB
/dx= - NμοiR²/2 [3(s/2)/ (R²+s²/4)⁵÷² - 3(s/2)/(R²+s²/4)⁵÷²
] =0
independent of the value of s.