Total momentum after the collision: +200 kg m/s to the right
Explanation:
We can answer this question by using the law of conservation of momentum, which states that for an isolated system (=no external forces acting on the system), the total momentum is conserved.
Mathematically,

where
is the total momentum before the collision
is the total momentum after the collision
In this problem, the system consists of two hockey players. Before the collision, their total momentum is
(to the right)
Therefore, according to the law of conservation of momentum, their total momentum after the collision must be the same:

And given that the sign is +, the direction is still the same, therefore to the right.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:
An electroscope is an early scientific instrument used to detect the presence of electric charge on a body. It detects charge by the movement of a test object due to the Coulomb electrostatic force on it. The amount of charge on an object is proportional to its voltage.
Explanation:
Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:

It is False it's about how hard you work