Watt is a unit for power that is also equal to J/s. We therefore need to convert the minutes to seconds first before answering. Every minute is comprised of 60 seconds. Therefore, 3 minutes are composed of 180 seconds. Multiplying the number of seconds to the given power will give us,
Work = Power x time
= (1500 J/s) x (180 s)
= 270,000 J
Therefore, the answer is letter D.
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
When Janet leaves the platform, she's moving horizontally at 1.92 m/s. We assume that there's no air resistance, and gravity has no effect on horizontal motion. There's no horizontal force acting on Janet to make her move horizontally any faster or slower than 1.92 m/s.
She's in the air for 1.1 second before she hits the water.
Moving horizontally at 1.92 m/s for 1.1 second, she sails out away from the platform
(1.92 m/s) x (1.1 sec) = <em>2.112 meters</em>