Answer:
Y(n) = 7n + 23
Step-by-step explanation:
Given:
f(0) = 30
f(n+1) = f(n) + 7
For n=0 : f(1) = f(0) + 7
For n=1 : f(2) = f(1) + 7
For n=2 : f(3) = f(2) + 7 and so on.
Hence the sequence is an arithmetic progression with common difference 7 and first term 30.
We have to find a general equation representing the terms of the sequence.
General term of an arithmetic progression is:
T(n) = a + (n-1)d
Here a = 30 and d = 7
Y(n) = 30 + 7(n-1) = 7n + 23
Answer:
104 miles
Step-by-step explanation:
52/2.5 = 20.8
20.8 miles = 1 inch
20.8 x 5
104 miles = 5 inches
9514 1404 393
Answer:
-3 ≤ x ≤ 19/3
Step-by-step explanation:
This inequality can be resolved to a compound inequality:
-7 ≤ (3x -5)/2 ≤ 7
Multiply all parts by 2.
-14 ≤ 3x -5 ≤ 14
Add 5 to all parts.
-9 ≤ 3x ≤ 19
Divide all parts by 3.
-3 ≤ x ≤ 19/3
_____
<em>Additional comment</em>
If you subtract 7 from both sides of the given inequality, it becomes ...
|(3x -5)/2| -7 ≤ 0
Then you're looking for the values of x that bound the region where the graph is below the x-axis. Those are shown in the attachment. For graphing purposes, I find this comparison to zero works well.
__
For an algebraic solution, I like the compound inequality method shown above. That only works well when the inequality is of the form ...
|f(x)| < (some number) . . . . or ≤
If the inequality symbol points away from the absolute value expression, or if the (some number) expression involves the variable, then it is probably better to write the inequality in two parts with appropriate domain specifications:
|f(x)| > g(x) ⇒ f(x) > g(x) for f(x) > 0; or -f(x) > g(x) for f(x) < 0
Any solutions to these inequalities must respect their domains.
Answer:
is the number 4
so 13/16 3/16
Step-by-step explanation:
Answer:
The distance between x and y on the number line is 2x
Step-by-step explanation:
we know that
If y is the opposite of x
then

The distance between x and y is equal to

