1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
13

In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. Controlling the angle of the sp

ike is difficult. Suppose a ball is spiked from a height of 2.10 m with an initial speed of 21.0 m/s at a downward angle of 14.0°. How much farther on the opposite floor would it have landed if the downward angle were, instead, 6.0°?

Physics
1 answer:
MAVERICK [17]3 years ago
7 0

Answer:

The ball would have landed 3.31m farther if the downward angle were 6.0° instead.

Explanation:

In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).

We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.

So, first we need to determine the components of the velocity of the ball, like this:

V_{Ax}=V_{A}cos\theta

V_{Ax}=(21m/s)cos(-14^{o})

V_{Ax}=20.38 m/s

V_{Ay}=V_{A}sin\theta

V_{Ay}=(21m/s)sin(-14^{o})

V_{Ay}=-5.08 m/s

we pick the positive one, so it takes 0.317s for the ball to hit on point A.

so now we can find the distance from the net to point A with this time. We can find it like this:

x_{A}=V_{Ax}t

x_{A}=(20.38m/s)(0.317s)

x_{A}=6.46m

Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:

V_{Bx}=20.88 m/s

V_{By}=-2.195 m/s

y_{Bf}=y_{B0}+V_{0}t-\frac{1}{2}at^{2}

0=2.1m+(-2.195m/s)t-\frac{1}{2}(-9.8m/s^{2})t^{2}

-4.9t^{2}-2.195t+2.1=0

t=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}

t=\frac{-(-2.195)\pm\sqrt{(-2.195)^{2}-4(-4.9)(2.1)}}{2(-4.9)}

t= -0.9159s    or   t=0.468s

we pick the positive one, so it takes 0.468s for the ball to hit on point B.

so now we can find the distance from the net to point B with this time. We can find it like this:

x_{B}=V_{Bx}t

x_{B}=(20.88m/s)(0.468s)

x_{B}=9.77m

So once we got the two distances we can now find the difference between them:

x_{B}-x_{A}=9.77m-6.46m=3.31m

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.

You might be interested in
How are longitudinal and transverse waves different?
Natalija [7]

Answer:

A longitudinal wave is a wave where the movement of the medium is in the same direction as the wave. On the other hand, a transverse wave is a wave where the movement of the medium is at a right angle to the wave direction.

Explanation:i got this right on a quiz so i know its right

3 0
4 years ago
Because of the curvature of the earth, the maximum distance D that you can see from the top of a tall building of height h is es
mojhsa [17]

Answer:

 D = 9.9 10⁶ mi

Explanation:

In the exercise they give the expression for maximum viewing distance

       D = 2 r h + h²

Ask for this distance for a height of 1100 feet

Let's calculate

        D = 2 3960 1100 + 1100²

        D = 8.712 10⁶ + 1.21 10⁶

        D = 9.92 10⁶ mi

         D = 9.9 10⁶ mi

8 0
3 years ago
The acceleration due to gravity on the Moon's surface is
Molodets [167]

Answer:

50 lb

Explanation:

Given,

The weight of astronaut's life support backpack on Earth (w) = 300 lb

Acceleration due to gravity on Earth (g) = 9.8 m/s²

Acceleration due to gravity on Moon = g'

g'=\frac{g}{6}

We know that weight of an object on Earth is,

w = m\times g

m = \frac{w}{g}

Similarly, weight on Moon will be

w' = m\times g'

w' = \frac{w}{g}\times\frac{g}{6}

w' = \frac{300}{6}

w' = 50

Thus the astronaut's life support backpack will weigh 50 lb on Moon.

7 0
3 years ago
In a region of space where gravitational forces can be neglected, a sphere is accelerated by a uniform light beam of intensity 8
BlackZzzverrR [31]

Answer:

The correct answer is B

Explanation:

To calculate the acceleration we must use Newton's second law

      F = m a

      a = F / m

To calculate the force we use the defined pressure and the radiation pressure for an absorbent surface

       P = I / c        absorbent surface

       P = F / A

       F / A = I / c

       F = I A / c

The area of ​​area of ​​a circle is

      A = π r²

We replace

     F = I π r² / c

Let's calculate

     F = 8.0 10⁻³ π (1.0 10⁻⁶)²/3 10⁸

     F = 8.375 10⁻²³ N

Density is

      ρ = m / V

      m = ρ V

      m = ρ (4/3 π r³)

      m = 4500 (4/3 π (1 10⁻⁶)³)

      m = 1,885 10⁻¹⁴ kg

Let's calculate the acceleration

     a = 8.375 10⁻²³ / 1.885 10⁻¹⁴

     a = 4.44 10⁻⁹ m/s²               absorbent surface

The correct answer is B

4 0
3 years ago
A modern compact fluorescent lamp contains 1.4 mg of mercury (Hg). If each mercury atom in the lamp were to emit a single photon
Reika [66]

Answer:

A. 1.64 J

Explanation:

First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

n=\frac{m}{M_m}

where

n is the number of moles

m = 1.4 mg = 0.0014 g is the mass of mercury

Mm = 200.6 g/mol is the molar mass of mercury

Substituting, we find

n=\frac{0.0014 g}{200.6 g/mol}=7.0\cdot 10^{-6} mol

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

N=n N_A

where

n is the number of moles

N_A=6.022\cdot 10^{23} mol^{-1} is the Avogadro number

Substituting,

N=(7.0\cdot 10^{-6} mol)(6.022\cdot 10^{23} mol^{-1})=4.22\cdot 10^{18} atoms

The energy emitted by each atom (the energy of one photon) is

E_1 = \frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda=508 nm=5.08\cdot 10^{-7}nm is the wavelength

Substituting,

E_1 = \frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{5.08\cdot 10^{-7} m}=3.92\cdot 10^{-19} J

And so, the total energy emitted by the sample is

E=nE_1 = (4.22\cdot 10^{18} )(3.92\cdot 10^{-19}J)=1.64 J

4 0
3 years ago
Other questions:
  • the resistance of a wire of length 80cm and of uniform area of cross-section 0.025cmsq., is found to be 1.50 ohm. Calculate spec
    6·1 answer
  • Which relationship between sample size and sampling error is correct? Question 36 options:
    15·1 answer
  • 3. A man heads up a trail going north to see a lake. The trail is 5 miles long and it takes him
    14·1 answer
  • Question 1
    7·1 answer
  • How much force does a soccer goalie
    9·1 answer
  • Please I really need the help
    13·1 answer
  • Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0 ​
    9·1 answer
  • Which situation is the best example of translational motion?.
    13·1 answer
  • 3. why is the sum of the maximum voltages across each element in a series r l c circuit usually greater than the maximum applied
    15·1 answer
  • 9.00 V is applied to a wire with a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!