Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
The tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
<h3>Principle of moments</h3>
The Principle of Moments states that when a body is in equip, the sum of clockwise moment about a point is equal to the sum of anticlockwise moment about the same point.
The formula for calculating moment is given below:
- Moment = Force × perpendicular distance from the pivot
<h3>Calculating the tension in the chains</h3>
From the principle of moments:
Let tension in chain 1 be T1 and tension in chain 2 be T2.
T1 + T2 = 150 + 650 + 419
T1 + T2 =1219
Taking all distances from chain 1,
Sum of Moments = 0
419 × 0.5 + 150 × 0.85 + 650 × 0.9 = T2 × 1.7
T2 = 922/17
T2 = 542.35 N
Then, T1 = 1219 - 542.35
T1 = 676.65 N
Therefore, the tension in the two chains T1 and T2 is 676.65 N and 542.53 N respectively.
Learn more about tension and moments at: brainly.com/question/187404
brainly.com/question/14303536
Answer:
Explanation:
Given
mass of book(m)=2.1 kg
height up to which book is lifted is (h)2.2 m
height of person 
Potential energy of book relative to ground=mgh

(b)PE w.r.t to person head =mg(h-h0)

work done by person in lifting box 2.2 m w.r.t floor
Word done =Potential Energy of box relative to floor=45.2 J
Water travels through long, thin tubes running up from the roots through the stems and leaves called xylem.Water moves up the xylem through a process called capillary action.
Capillary action allows water to be pulled through the thin tubes because the molecules of the water are attracted to the molecules that make up the tube. The water molecules at the top are pulled up the tube and the water molecules below them are pulled along because of their attraction to the water molecules above them.