Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there
Answer:
Final temperature, 
Explanation:
Given that,
Mass of silver ring, m = 4 g
Initial temperature, 
Heat released, Q = -18 J (as heat is released)
Specific heat capacity of silver, 
To find,
Final temperature
Solution,
The expression for the specific heat is given by :





So, the final temperature of silver is 21.85 degrees Celsius.
Answer:
2 m/s^2, west
Explanation:
Vf=final velcoity
Vi=initial velocity
t=timw

=

= - 2 m/s^2
The - changes direction and makes it opposite
2 m/s, west