<span><span><span>Release enzymes outside of the cell (exocytosis)</span>
which may serve the purpose of destroying materials around the cell.</span><span><span>Break-down 'digestion' of materials from inside the cell (autophagy)</span>
i.e. by fusing with vacuoles from inside the cell.
This could include digesting worn-out organelles so that useful chemicals locked-up in their structures can be re-used by the cell.</span><span><span>Break-down 'digestion' of materials from outside the cell (heterophagy)</span>
i.e. by fusing with vacuoles from outside the cell.
This could include breaking-down material taken-in by phagocytes, which include many types of white blood cells - also known as leucocytes. Specific mechanisms of heterophagy can be:<span><span>phagocytic - by which cells engulf extracellular debris, bacteria or other particles - only occurs in certain specialized cells</span><span>pinocytic - by which cells engulf extracellular fluid</span><span>endocytic - by which cells take-up particles such as molecules that have become attached to the outer-surface of the cell membrane.</span></span></span><span><span>Recycle the products of biochemical reactions that have taken place following materials being brought into the cell by endocytosis (general term for this 'recycling' function: biosynthesis) </span>
Different materials (chemicals) are processed in different ways, e.g. some structures may be processed/degraded within lysosomes and others are taken to the surface of the cell.</span><span>Completely break-down cells that have died (autolysis)</span></span>
In general, the functions of lysosomes involve breaking-down i.e. processing to 'make safe' or make use of, or removing from the cell e.g. by exocytosis, useless and potentially harmful materials such as old worn-out parts of the cell or potential threats such bacteria. Lysosomes can therefore be thought of as the rubbish disposal units within cel
It would be harmed by chemicals in the environment. ... In binary fission, the two new cells that are formed are susceptible to the same antibiotic.
Answer:
Water (H2O) can be called a molecule or a compound because it is made of hydrogen (H) and oxygen (O) atoms. There are two main types of chemical bonds that hold atoms together: covalent and ionic/electrovalent bonds. Atoms that share electrons in a chemical bond have covalent bonds.
Answer:
Hi, There!
The minor segment is the region bounded by the chord and the minor arc intercepted by the chord. The major segment is the region bounded by the chord and the major arc intercepted by the chord.
xXxAnimexXx
Have a great day!
Hai there :3 I'm planning to study chemical engineering.
Question related to Biochemistry (Photosynthesis & Cellular Respiration)
1. Chemiosmosis. In the process of chemiosmosis, specific enzymes (such as ATP synthase) create ATP. Hydrogen ions go from a higher proton concentration to a lower one, which is why it's called chemio"osmosis"
2. Electron Transport Chain (ETC). The name says it all. Simply explained, electrons are transported and transferred in the mitochondrial membrane.
3. Oxygen. O2, the diatomic molecule, is essential in respiration. In the final stage of respiration, at the near end of the electron transport chain, oxygen accepts protons to become water. Cells use O2 during oxidative phosphorylation.
4. NADPH. I remember learning what this acronym means by heart. Nicotinamide Adenine Dinucleotide Phosphate Hydrogen. NADPH is essential in photosynthesis as a typical coenzyme in the reduction of chemical reactions.