( 2x +5)^2 =4
2x+5=2
2x=-3
X=-3/2
I hope this helps you out
Answer:
PQ = 5 units
QR = 8 units
Step-by-step explanation:
Given
P(-3, 3)
Q(2, 3)
R(2, -5)
To determine
The length of the segment PQ
The length of the segment QR
Determining the length of the segment PQ
From the figure, it is clear that P(-3, 3) and Q(2, 3) lies on a horizontal line. So, all we need is to count the horizontal units between them to determine the length of the segments P and Q.
so
P(-3, 3), Q(2, 3)
PQ = 2 - (-3)
PQ = 2+3
PQ = 5 units
Therefore, the length of the segment PQ = 5 units
Determining the length of the segment QR
Q(2, 3), R(2, -5)
(x₁, y₁) = (2, 3)
(x₂, y₂) = (2, -5)
The length between the segment QR is:




Apply radical rule: ![\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)

Therefore, the length between the segment QR is: 8 units
Summary:
PQ = 5 units
QR = 8 units
You are correct!
90 would be the correct choice, here is why:
use the eqation: $20*30*15%
first times $20*30=600
now, 600 *15%= $90
therefore, your answer is 90 dollars
Answer:
36/21 (simplified)
Step-by-step explanation:
To use KCF, multiply by the reciprocal. 16/21 x 9/4
Just flip the denominator with the numerator