For every 50 shoppers, 25 watermelons are sold, so 50/25
Brainliest?
I'm trying to move up a rank and it would help!
5 students scored a 90 or above. If you look at the axis that says “test scores” just count the number of dots on the “90” line and above
Using the binomial distribution, it is found that there is a:
a) 0.9298 = 92.98% probability that at least 8 of them passed.
b) 0.0001 = 0.01% probability that fewer than 5 passed.
For each student, there are only two possible outcomes, either they passed, or they did not pass. The probability of a student passing is independent of any other student, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial probability distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 90% of the students passed, hence
.
- The professor randomly selected 10 exams, hence
.
Item a:
The probability is:

In which:




Then:

0.9298 = 92.98% probability that at least 8 of them passed.
Item b:
The probability is:

Using the binomial formula, as in item a, to find each probability, then adding them, it is found that:

Hence:
0.0001 = 0.01% probability that fewer than 5 passed.
You can learn more about the the binomial distribution at brainly.com/question/24863377
Answer:

And the z score for 0.4 is

And then the probability desired would be:

Step-by-step explanation:
The normal approximation for this case is satisfied since the value for p is near to 0.5 and the sample size is large enough, and we have:


For this case we can assume that the population proportion have the following distribution
Where:


And we want to find this probability:

And we can use the z score formula given by:

And the z score for 0.4 is

And then the probability desired would be:

Answer:
26
Step-by-step explanation:
338 / 13 = 26
26 batches of 13 flowers are equal to 338.