The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
Answer:
Soap breaks up the oil into smaller drops, which can mix with the water. It works because soap is made up of molecules with two very different ends (one end of molecules are hydrophilic, so they love water; the other end of molecules is hydrophobic, so they hate water).
Answer:
Explanation:
The coordinate sketch for the system is shown in the attached file below. Also, in the cartesian coordinate system, since the height is less than the length and width, we did neglect the height. Thus, we eliminate the height and converted it to a two-dimension.
The 2 means there are two phosphate ions in a molecule of magnesium phosphate.
Answer:
right is the correct answer to the given question .
Explanation:
In this question figure is missing
The main objective right-hand rule to decide the position of the magnetic force on the positive force acting, either the position of the thumb of a right hand with in position of v, the fingers throughout the position of B1, and a right angles throughout the position of F1 to the hand positions.
So 
- So from the magnetic right hand rule the direction of the magnetic field in front of a wire is right .
- All the others options are incorrect because they do not give the direction of the magnetic field in front of a wire is right .