Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
Answer:
a.Attractive

Explanation:
When it comes to charges, the charges which are alike repel each other and the charges which are different will attract each other.
Here, there is a proton and electron which are different particles hence, they will attract each other.
= Charge of electron and proton = 
r = Distance between them = 997 nm
k = Coulomb constant = 
Force is given by

The force of attraction between the particles will be 
Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s
Answer:
No
Explanation:
The fastest recorded time for a person to run 100 metres is 9.58 seconds, which is the equivalent of 10.4 metres per second
Answer:
I think the answer is
a "cookbook" recipe for performing scientific investigations
Explanation: