Answer:
The net torque is zero
Explanation:
Let's assume that the dipole is compose of two equal but oposite charges e, and it cam be represented by a rod with one end having a charge e and the other end with a charge of -e. Notice that the dipole is parallel to the electric field thus the force felt by both of the charges will be parallel to the electric field. This means that there will be no components of the forces that are perpendicular to the rod which is a requirement for it to have a torque.
The force is -12,000 N
Explanation:
First of all, we calculate the acceleration of the ball, by using the following suvat equation:

where:
v = 0 is the final velocity of the baseball (it comes to rest)
u = 40 m/s is the initial velocity
a is the acceleration
s = 2.0 cm = 0.02 m is the displacement of the ball
Solving for a,

Now we can calculate the average force exerted on the ball, by using Newton's second law:

where
m = 300 g = 0.3 kg is the mass of the ball
is the acceleration
Substituting,

where the negative sign indicates that the direction of the force is opposite to the direction of motion of the ball.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Distance = (speed) x (time)
Car A: Distance = (8 m/s) x (43 s) = 344 meters
Car B: Distance = (7 m/s) x (50 s) = 350 meters
350 meters is a longer distance than 344 meters.
<em>Car-B traveled a longer distance</em> than Car-A did.
A conclusion is, in some ways, like your introduction. You restate your thesis and summarize your main points of evidence for the reader.You can usually do this in one paragraph.
Answer:
Point 2.
Explanation:
Potential energy is simply defined as the energy stored in an object due to its position. It is can be represented mathematically by:
P.E = mgh
Where:
P.E is the potential energy.
m is the mass of the object.
g is acceleration due to gravity.
h is the height to which the object is located.
From the above equation, we can thus say that potential energy depends on the height of the object since the mass of the object is always constant i.e as the height of the object increase, the potential energy also increases and as the height of the object decrease, the potential energy also decreases.
Now, considering the diagram in the question given, we can see that point 2 is the lowest height to which the rider is located. At this point i.e point 2, the rider will have the least potential energy.